Loading…

Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel

In this paper, an Artificial Neural Network soft matrix correlation to estimate the pressure drop of air-water two-phase flow is developed. The applicability of the model is extended by using dimensionless physical numbers as inputs (Air-Reynolds number, Water-Reynolds number, and the ratio of Air I...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-02, Vol.236 (3), p.1430-1442
Main Authors: Manuel, Barroso-Maldonado Juan, Manuel, Riesco-Ávila José, Martín, Picón-Núñez, Manuel, Belman-Flores Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-566cd10fdddc0012cd3208b942ec3340c988515ac996073c8b52d7ca3d1f5cd53
container_end_page 1442
container_issue 3
container_start_page 1430
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Manuel, Barroso-Maldonado Juan
Manuel, Riesco-Ávila José
Martín, Picón-Núñez
Manuel, Belman-Flores Juan
description In this paper, an Artificial Neural Network soft matrix correlation to estimate the pressure drop of air-water two-phase flow is developed. The applicability of the model is extended by using dimensionless physical numbers as inputs (Air-Reynolds number, Water-Reynolds number, and the ratio of Air Inertial Forces to Water Inertial Forces), so the model can be implemented for vertical pipes with the proper combination of diameter-velocity-density-viscosity allowing estimations of dimensional numbers within the range of: Air-Reynolds numbers (430–6100), Water-Reynolds number (2400–7200), and Air-Water-Inertial forces ratio (1.6–1834), including the diameter range from 3 to 28 mm. Experimental measurements of frictional pressure drop of water-air mixtures are determined at different conditions. A search of the most suitable density, viscosity, and friction models was conducted and used in the model. The performance of the proposed ANN correlation is compared against published expressions showing good approximation to experimental data; results indicate that the most used correlations are within a mean relative error (mre) of 23.9–30.7%, while the proposed ANN has a mre = 0.9%. Two additional features are discussed: i) the applicability and generality of the ANN using untrained data, ii) the applicability in laminar, transitional, and turbulent flow regimen. To take the approach beyond a robust performance mapping, the methodology to translate the ANN into a programmable equation is presented.
doi_str_mv 10.1177/09544062211020329
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2627084047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062211020329</sage_id><sourcerecordid>2627084047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-566cd10fdddc0012cd3208b942ec3340c988515ac996073c8b52d7ca3d1f5cd53</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssXYZv_JYVhUvqYIFsI5c26EpaRzGLhV_T6ogsUDMZhZzz52ZS8glhxnneX4NpVYKMiE4BwFSlEdkIkBxJspCHpPJYc4OglNyFuMGhhKZnpD351AnNn98pCsTvaM2IPrWpCZ0tA5ITYNsb5JHmvaB9etBROs27GmPPsYdeuow9NTH1GxHqumooZ8eU2NNS7dN1zC7Nl3n23NyUps2-oufPiWvtzcvi3u2fLp7WMyXzIpMJaazzDoOtXPOAnBhnRRQrEolvJVSgS2LQnNtbFlmkEtbrLRwuTXS8Vpbp-WUXI2-PYaP3XBatQk77IaVlchEDoUClQ8qPqoshhjR11WPww_4VXGoDplWfzIdmNnIRPPmf13_B74Bq_B2lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627084047</pqid></control><display><type>article</type><title>Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel</title><source>SAGE Journals</source><source>IMechE Titles Via Sage</source><creator>Manuel, Barroso-Maldonado Juan ; Manuel, Riesco-Ávila José ; Martín, Picón-Núñez ; Manuel, Belman-Flores Juan</creator><creatorcontrib>Manuel, Barroso-Maldonado Juan ; Manuel, Riesco-Ávila José ; Martín, Picón-Núñez ; Manuel, Belman-Flores Juan</creatorcontrib><description>In this paper, an Artificial Neural Network soft matrix correlation to estimate the pressure drop of air-water two-phase flow is developed. The applicability of the model is extended by using dimensionless physical numbers as inputs (Air-Reynolds number, Water-Reynolds number, and the ratio of Air Inertial Forces to Water Inertial Forces), so the model can be implemented for vertical pipes with the proper combination of diameter-velocity-density-viscosity allowing estimations of dimensional numbers within the range of: Air-Reynolds numbers (430–6100), Water-Reynolds number (2400–7200), and Air-Water-Inertial forces ratio (1.6–1834), including the diameter range from 3 to 28 mm. Experimental measurements of frictional pressure drop of water-air mixtures are determined at different conditions. A search of the most suitable density, viscosity, and friction models was conducted and used in the model. The performance of the proposed ANN correlation is compared against published expressions showing good approximation to experimental data; results indicate that the most used correlations are within a mean relative error (mre) of 23.9–30.7%, while the proposed ANN has a mre = 0.9%. Two additional features are discussed: i) the applicability and generality of the ANN using untrained data, ii) the applicability in laminar, transitional, and turbulent flow regimen. To take the approach beyond a robust performance mapping, the methodology to translate the ANN into a programmable equation is presented.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062211020329</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Correlation ; Density ; Diameters ; Dimensionless numbers ; Fluid flow ; Laminar flow ; Pressure drop ; Reynolds number ; Two phase flow ; Viscosity ; Water drops</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-02, Vol.236 (3), p.1430-1442</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-566cd10fdddc0012cd3208b942ec3340c988515ac996073c8b52d7ca3d1f5cd53</cites><orcidid>0000-0001-7810-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062211020329$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062211020329$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79364</link.rule.ids></links><search><creatorcontrib>Manuel, Barroso-Maldonado Juan</creatorcontrib><creatorcontrib>Manuel, Riesco-Ávila José</creatorcontrib><creatorcontrib>Martín, Picón-Núñez</creatorcontrib><creatorcontrib>Manuel, Belman-Flores Juan</creatorcontrib><title>Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>In this paper, an Artificial Neural Network soft matrix correlation to estimate the pressure drop of air-water two-phase flow is developed. The applicability of the model is extended by using dimensionless physical numbers as inputs (Air-Reynolds number, Water-Reynolds number, and the ratio of Air Inertial Forces to Water Inertial Forces), so the model can be implemented for vertical pipes with the proper combination of diameter-velocity-density-viscosity allowing estimations of dimensional numbers within the range of: Air-Reynolds numbers (430–6100), Water-Reynolds number (2400–7200), and Air-Water-Inertial forces ratio (1.6–1834), including the diameter range from 3 to 28 mm. Experimental measurements of frictional pressure drop of water-air mixtures are determined at different conditions. A search of the most suitable density, viscosity, and friction models was conducted and used in the model. The performance of the proposed ANN correlation is compared against published expressions showing good approximation to experimental data; results indicate that the most used correlations are within a mean relative error (mre) of 23.9–30.7%, while the proposed ANN has a mre = 0.9%. Two additional features are discussed: i) the applicability and generality of the ANN using untrained data, ii) the applicability in laminar, transitional, and turbulent flow regimen. To take the approach beyond a robust performance mapping, the methodology to translate the ANN into a programmable equation is presented.</description><subject>Artificial neural networks</subject><subject>Correlation</subject><subject>Density</subject><subject>Diameters</subject><subject>Dimensionless numbers</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Pressure drop</subject><subject>Reynolds number</subject><subject>Two phase flow</subject><subject>Viscosity</subject><subject>Water drops</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssXYZv_JYVhUvqYIFsI5c26EpaRzGLhV_T6ogsUDMZhZzz52ZS8glhxnneX4NpVYKMiE4BwFSlEdkIkBxJspCHpPJYc4OglNyFuMGhhKZnpD351AnNn98pCsTvaM2IPrWpCZ0tA5ITYNsb5JHmvaB9etBROs27GmPPsYdeuow9NTH1GxHqumooZ8eU2NNS7dN1zC7Nl3n23NyUps2-oufPiWvtzcvi3u2fLp7WMyXzIpMJaazzDoOtXPOAnBhnRRQrEolvJVSgS2LQnNtbFlmkEtbrLRwuTXS8Vpbp-WUXI2-PYaP3XBatQk77IaVlchEDoUClQ8qPqoshhjR11WPww_4VXGoDplWfzIdmNnIRPPmf13_B74Bq_B2lQ</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Manuel, Barroso-Maldonado Juan</creator><creator>Manuel, Riesco-Ávila José</creator><creator>Martín, Picón-Núñez</creator><creator>Manuel, Belman-Flores Juan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-7810-2566</orcidid></search><sort><creationdate>202202</creationdate><title>Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel</title><author>Manuel, Barroso-Maldonado Juan ; Manuel, Riesco-Ávila José ; Martín, Picón-Núñez ; Manuel, Belman-Flores Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-566cd10fdddc0012cd3208b942ec3340c988515ac996073c8b52d7ca3d1f5cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Correlation</topic><topic>Density</topic><topic>Diameters</topic><topic>Dimensionless numbers</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Pressure drop</topic><topic>Reynolds number</topic><topic>Two phase flow</topic><topic>Viscosity</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manuel, Barroso-Maldonado Juan</creatorcontrib><creatorcontrib>Manuel, Riesco-Ávila José</creatorcontrib><creatorcontrib>Martín, Picón-Núñez</creatorcontrib><creatorcontrib>Manuel, Belman-Flores Juan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manuel, Barroso-Maldonado Juan</au><au>Manuel, Riesco-Ávila José</au><au>Martín, Picón-Núñez</au><au>Manuel, Belman-Flores Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-02</date><risdate>2022</risdate><volume>236</volume><issue>3</issue><spage>1430</spage><epage>1442</epage><pages>1430-1442</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>In this paper, an Artificial Neural Network soft matrix correlation to estimate the pressure drop of air-water two-phase flow is developed. The applicability of the model is extended by using dimensionless physical numbers as inputs (Air-Reynolds number, Water-Reynolds number, and the ratio of Air Inertial Forces to Water Inertial Forces), so the model can be implemented for vertical pipes with the proper combination of diameter-velocity-density-viscosity allowing estimations of dimensional numbers within the range of: Air-Reynolds numbers (430–6100), Water-Reynolds number (2400–7200), and Air-Water-Inertial forces ratio (1.6–1834), including the diameter range from 3 to 28 mm. Experimental measurements of frictional pressure drop of water-air mixtures are determined at different conditions. A search of the most suitable density, viscosity, and friction models was conducted and used in the model. The performance of the proposed ANN correlation is compared against published expressions showing good approximation to experimental data; results indicate that the most used correlations are within a mean relative error (mre) of 23.9–30.7%, while the proposed ANN has a mre = 0.9%. Two additional features are discussed: i) the applicability and generality of the ANN using untrained data, ii) the applicability in laminar, transitional, and turbulent flow regimen. To take the approach beyond a robust performance mapping, the methodology to translate the ANN into a programmable equation is presented.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062211020329</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7810-2566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-02, Vol.236 (3), p.1430-1442
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2627084047
source SAGE Journals; IMechE Titles Via Sage
subjects Artificial neural networks
Correlation
Density
Diameters
Dimensionless numbers
Fluid flow
Laminar flow
Pressure drop
Reynolds number
Two phase flow
Viscosity
Water drops
title Soft-ANN based correlation for air-water two-phase flow pressure drop estimation in a vertical mini-channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft-ANN%20based%20correlation%20for%20air-water%20two-phase%20flow%20pressure%20drop%20estimation%20in%20a%20vertical%20mini-channel&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Manuel,%20Barroso-Maldonado%20Juan&rft.date=2022-02&rft.volume=236&rft.issue=3&rft.spage=1430&rft.epage=1442&rft.pages=1430-1442&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062211020329&rft_dat=%3Cproquest_cross%3E2627084047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-566cd10fdddc0012cd3208b942ec3340c988515ac996073c8b52d7ca3d1f5cd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627084047&rft_id=info:pmid/&rft_sage_id=10.1177_09544062211020329&rfr_iscdi=true