Loading…
Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator
This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI m...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.14835-14845 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83 |
container_end_page | 14845 |
container_issue | |
container_start_page | 14835 |
container_title | IEEE access |
container_volume | 10 |
creator | Bakhtiaridoust, Mohammadhosein Yadegar, Meysam Meskin, Nader Noorizadeh, Mohammad |
description | This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique. |
doi_str_mv | 10.1109/ACCESS.2022.3146417 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2627846411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693944</ieee_id><doaj_id>oai_doaj_org_article_a8195e139e7846d2811362ced526ade1</doaj_id><sourcerecordid>2627846411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</originalsourceid><addsrcrecordid>eNpNUctuwjAQtKpWKqJ8ARdLPYfGjzjxEVGgqLQcKGfLsRcUFGJqmwN_30AQ6l72NbOz0iA0JOmIkFS-jSeT6Xo9oimlI0a44CR_QD1KhExYxsTjv_oZDULYp20U7SjLe0h9OQt1MvMAeA7uANFXBs_0qY74HSKYWLkG68biRXC1vnZb5_G3a-qqAe3x-hwiHALehKrZ4U_njgfd4NURvI7Ov6Cnra4DDG65jzaz6c_kI1mu5ovJeJkYnhYxKY2mpeU5hYwaaoUkGUgLQlJqKbcFpFyIMgWRmdLKbFswKLXhhIhcCmsL1keL7q51eq-Ovjpof1ZOV-o6cH6ntI-VqUHpgsgMCJOQF1xYWhDCBDVgMyq0bRd99NrdOnr3e4IQ1d6dfNO-r6igF1Ir3KJYhzLeheBhe1clqboYozpj1MUYdTOmZQ07VgUAd4YUkknO2R9zn4lI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627846411</pqid></control><display><type>article</type><title>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</title><source>IEEE Open Access Journals</source><creator>Bakhtiaridoust, Mohammadhosein ; Yadegar, Meysam ; Meskin, Nader ; Noorizadeh, Mohammad</creator><creatorcontrib>Bakhtiaridoust, Mohammadhosein ; Yadegar, Meysam ; Meskin, Nader ; Noorizadeh, Mohammad</creatorcontrib><description>This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3146417</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Dynamical systems ; extended dynamic mode decomposition ; Fault detection ; Generators ; geometric approach ; Koopman operator ; Linear operators ; Linear systems ; Mathematical analysis ; Mathematical models ; Model-free fault detection and isolation ; Nonlinear dynamical systems ; Nonlinear dynamics ; Nonlinear systems ; Power system dynamics ; Reduced order models ; reduced-order model</subject><ispartof>IEEE access, 2022, Vol.10, p.14835-14845</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</citedby><cites>FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</cites><orcidid>0000-0002-1109-1214 ; 0000-0003-0660-7017 ; 0000-0003-3098-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693944$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bakhtiaridoust, Mohammadhosein</creatorcontrib><creatorcontrib>Yadegar, Meysam</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><creatorcontrib>Noorizadeh, Mohammad</creatorcontrib><title>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.</description><subject>Analytical models</subject><subject>Dynamical systems</subject><subject>extended dynamic mode decomposition</subject><subject>Fault detection</subject><subject>Generators</subject><subject>geometric approach</subject><subject>Koopman operator</subject><subject>Linear operators</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model-free fault detection and isolation</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Power system dynamics</subject><subject>Reduced order models</subject><subject>reduced-order model</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuwjAQtKpWKqJ8ARdLPYfGjzjxEVGgqLQcKGfLsRcUFGJqmwN_30AQ6l72NbOz0iA0JOmIkFS-jSeT6Xo9oimlI0a44CR_QD1KhExYxsTjv_oZDULYp20U7SjLe0h9OQt1MvMAeA7uANFXBs_0qY74HSKYWLkG68biRXC1vnZb5_G3a-qqAe3x-hwiHALehKrZ4U_njgfd4NURvI7Ov6Cnra4DDG65jzaz6c_kI1mu5ovJeJkYnhYxKY2mpeU5hYwaaoUkGUgLQlJqKbcFpFyIMgWRmdLKbFswKLXhhIhcCmsL1keL7q51eq-Ovjpof1ZOV-o6cH6ntI-VqUHpgsgMCJOQF1xYWhDCBDVgMyq0bRd99NrdOnr3e4IQ1d6dfNO-r6igF1Ir3KJYhzLeheBhe1clqboYozpj1MUYdTOmZQ07VgUAd4YUkknO2R9zn4lI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bakhtiaridoust, Mohammadhosein</creator><creator>Yadegar, Meysam</creator><creator>Meskin, Nader</creator><creator>Noorizadeh, Mohammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1109-1214</orcidid><orcidid>https://orcid.org/0000-0003-0660-7017</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid></search><sort><creationdate>2022</creationdate><title>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</title><author>Bakhtiaridoust, Mohammadhosein ; Yadegar, Meysam ; Meskin, Nader ; Noorizadeh, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Dynamical systems</topic><topic>extended dynamic mode decomposition</topic><topic>Fault detection</topic><topic>Generators</topic><topic>geometric approach</topic><topic>Koopman operator</topic><topic>Linear operators</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model-free fault detection and isolation</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Power system dynamics</topic><topic>Reduced order models</topic><topic>reduced-order model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakhtiaridoust, Mohammadhosein</creatorcontrib><creatorcontrib>Yadegar, Meysam</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><creatorcontrib>Noorizadeh, Mohammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakhtiaridoust, Mohammadhosein</au><au>Yadegar, Meysam</au><au>Meskin, Nader</au><au>Noorizadeh, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>14835</spage><epage>14845</epage><pages>14835-14845</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3146417</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1109-1214</orcidid><orcidid>https://orcid.org/0000-0003-0660-7017</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.14835-14845 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2627846411 |
source | IEEE Open Access Journals |
subjects | Analytical models Dynamical systems extended dynamic mode decomposition Fault detection Generators geometric approach Koopman operator Linear operators Linear systems Mathematical analysis Mathematical models Model-free fault detection and isolation Nonlinear dynamical systems Nonlinear dynamics Nonlinear systems Power system dynamics Reduced order models reduced-order model |
title | Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Free%20Geometric%20Fault%20Detection%20and%20Isolation%20for%20Nonlinear%20Systems%20Using%20Koopman%20Operator&rft.jtitle=IEEE%20access&rft.au=Bakhtiaridoust,%20Mohammadhosein&rft.date=2022&rft.volume=10&rft.spage=14835&rft.epage=14845&rft.pages=14835-14845&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3146417&rft_dat=%3Cproquest_doaj_%3E2627846411%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627846411&rft_id=info:pmid/&rft_ieee_id=9693944&rfr_iscdi=true |