Loading…

Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator

This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.14835-14845
Main Authors: Bakhtiaridoust, Mohammadhosein, Yadegar, Meysam, Meskin, Nader, Noorizadeh, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83
cites cdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83
container_end_page 14845
container_issue
container_start_page 14835
container_title IEEE access
container_volume 10
creator Bakhtiaridoust, Mohammadhosein
Yadegar, Meysam
Meskin, Nader
Noorizadeh, Mohammad
description This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.
doi_str_mv 10.1109/ACCESS.2022.3146417
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2627846411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693944</ieee_id><doaj_id>oai_doaj_org_article_a8195e139e7846d2811362ced526ade1</doaj_id><sourcerecordid>2627846411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</originalsourceid><addsrcrecordid>eNpNUctuwjAQtKpWKqJ8ARdLPYfGjzjxEVGgqLQcKGfLsRcUFGJqmwN_30AQ6l72NbOz0iA0JOmIkFS-jSeT6Xo9oimlI0a44CR_QD1KhExYxsTjv_oZDULYp20U7SjLe0h9OQt1MvMAeA7uANFXBs_0qY74HSKYWLkG68biRXC1vnZb5_G3a-qqAe3x-hwiHALehKrZ4U_njgfd4NURvI7Ov6Cnra4DDG65jzaz6c_kI1mu5ovJeJkYnhYxKY2mpeU5hYwaaoUkGUgLQlJqKbcFpFyIMgWRmdLKbFswKLXhhIhcCmsL1keL7q51eq-Ovjpof1ZOV-o6cH6ntI-VqUHpgsgMCJOQF1xYWhDCBDVgMyq0bRd99NrdOnr3e4IQ1d6dfNO-r6igF1Ir3KJYhzLeheBhe1clqboYozpj1MUYdTOmZQ07VgUAd4YUkknO2R9zn4lI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627846411</pqid></control><display><type>article</type><title>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</title><source>IEEE Open Access Journals</source><creator>Bakhtiaridoust, Mohammadhosein ; Yadegar, Meysam ; Meskin, Nader ; Noorizadeh, Mohammad</creator><creatorcontrib>Bakhtiaridoust, Mohammadhosein ; Yadegar, Meysam ; Meskin, Nader ; Noorizadeh, Mohammad</creatorcontrib><description>This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3146417</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Dynamical systems ; extended dynamic mode decomposition ; Fault detection ; Generators ; geometric approach ; Koopman operator ; Linear operators ; Linear systems ; Mathematical analysis ; Mathematical models ; Model-free fault detection and isolation ; Nonlinear dynamical systems ; Nonlinear dynamics ; Nonlinear systems ; Power system dynamics ; Reduced order models ; reduced-order model</subject><ispartof>IEEE access, 2022, Vol.10, p.14835-14845</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</citedby><cites>FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</cites><orcidid>0000-0002-1109-1214 ; 0000-0003-0660-7017 ; 0000-0003-3098-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693944$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bakhtiaridoust, Mohammadhosein</creatorcontrib><creatorcontrib>Yadegar, Meysam</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><creatorcontrib>Noorizadeh, Mohammad</creatorcontrib><title>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.</description><subject>Analytical models</subject><subject>Dynamical systems</subject><subject>extended dynamic mode decomposition</subject><subject>Fault detection</subject><subject>Generators</subject><subject>geometric approach</subject><subject>Koopman operator</subject><subject>Linear operators</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model-free fault detection and isolation</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Power system dynamics</subject><subject>Reduced order models</subject><subject>reduced-order model</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuwjAQtKpWKqJ8ARdLPYfGjzjxEVGgqLQcKGfLsRcUFGJqmwN_30AQ6l72NbOz0iA0JOmIkFS-jSeT6Xo9oimlI0a44CR_QD1KhExYxsTjv_oZDULYp20U7SjLe0h9OQt1MvMAeA7uANFXBs_0qY74HSKYWLkG68biRXC1vnZb5_G3a-qqAe3x-hwiHALehKrZ4U_njgfd4NURvI7Ov6Cnra4DDG65jzaz6c_kI1mu5ovJeJkYnhYxKY2mpeU5hYwaaoUkGUgLQlJqKbcFpFyIMgWRmdLKbFswKLXhhIhcCmsL1keL7q51eq-Ovjpof1ZOV-o6cH6ntI-VqUHpgsgMCJOQF1xYWhDCBDVgMyq0bRd99NrdOnr3e4IQ1d6dfNO-r6igF1Ir3KJYhzLeheBhe1clqboYozpj1MUYdTOmZQ07VgUAd4YUkknO2R9zn4lI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bakhtiaridoust, Mohammadhosein</creator><creator>Yadegar, Meysam</creator><creator>Meskin, Nader</creator><creator>Noorizadeh, Mohammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1109-1214</orcidid><orcidid>https://orcid.org/0000-0003-0660-7017</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid></search><sort><creationdate>2022</creationdate><title>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</title><author>Bakhtiaridoust, Mohammadhosein ; Yadegar, Meysam ; Meskin, Nader ; Noorizadeh, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Dynamical systems</topic><topic>extended dynamic mode decomposition</topic><topic>Fault detection</topic><topic>Generators</topic><topic>geometric approach</topic><topic>Koopman operator</topic><topic>Linear operators</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model-free fault detection and isolation</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Power system dynamics</topic><topic>Reduced order models</topic><topic>reduced-order model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakhtiaridoust, Mohammadhosein</creatorcontrib><creatorcontrib>Yadegar, Meysam</creatorcontrib><creatorcontrib>Meskin, Nader</creatorcontrib><creatorcontrib>Noorizadeh, Mohammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakhtiaridoust, Mohammadhosein</au><au>Yadegar, Meysam</au><au>Meskin, Nader</au><au>Noorizadeh, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>14835</spage><epage>14845</epage><pages>14835-14845</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a model-free fault detection and isolation (FDI) method for nonlinear dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI method to detect and isolate faults in the system. Koopman operator is an infinite-dimensional, linear operator which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear dynamical systems in combination with the linear geometric approach for fault detection and isolation. In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical system, and an experimental three-tank setup are considered. Results show a remarkable performance of the proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3146417</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1109-1214</orcidid><orcidid>https://orcid.org/0000-0003-0660-7017</orcidid><orcidid>https://orcid.org/0000-0003-3098-9369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.14835-14845
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2627846411
source IEEE Open Access Journals
subjects Analytical models
Dynamical systems
extended dynamic mode decomposition
Fault detection
Generators
geometric approach
Koopman operator
Linear operators
Linear systems
Mathematical analysis
Mathematical models
Model-free fault detection and isolation
Nonlinear dynamical systems
Nonlinear dynamics
Nonlinear systems
Power system dynamics
Reduced order models
reduced-order model
title Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Free%20Geometric%20Fault%20Detection%20and%20Isolation%20for%20Nonlinear%20Systems%20Using%20Koopman%20Operator&rft.jtitle=IEEE%20access&rft.au=Bakhtiaridoust,%20Mohammadhosein&rft.date=2022&rft.volume=10&rft.spage=14835&rft.epage=14845&rft.pages=14835-14845&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3146417&rft_dat=%3Cproquest_doaj_%3E2627846411%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-bca2bd472e52c2d6915e9de6922d24d8e0466b0e65cbd95f83ebac4116796dd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627846411&rft_id=info:pmid/&rft_ieee_id=9693944&rfr_iscdi=true