Loading…

Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework

Predicting discharges in sewage systems play an essential role in reducing sewer overflows and impacts on the environment and public health. Choosing a suitable model to predict discharges in these systems is essential to realizing these aforementioned goals. Long Short-Term Memory (LSTM) has been p...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-02, Vol.14 (3), p.300
Main Authors: Nguyen, Lam Van, Tornyeviadzi, Hoese Michel, Bui, Dieu Tien, Seidu, Razak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3
cites cdi_FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3
container_end_page
container_issue 3
container_start_page 300
container_title Water (Basel)
container_volume 14
creator Nguyen, Lam Van
Tornyeviadzi, Hoese Michel
Bui, Dieu Tien
Seidu, Razak
description Predicting discharges in sewage systems play an essential role in reducing sewer overflows and impacts on the environment and public health. Choosing a suitable model to predict discharges in these systems is essential to realizing these aforementioned goals. Long Short-Term Memory (LSTM) has been proposed as a robust technique for predicting discharges in wastewater networks. This study explored the potential application of an LSTM model to predict discharges using 3-month data set in a sewer network in Ålesund city, Norway. Different sequence-to-sequence LSTMs were investigated using various input and output datasets. The impact of data aggregation (10-min and 30-min intervals) was examined and compared to original sensor data (5-min intervals) to evaluate the performance of the LSTM model. The results show that 50-neuron LSTM architecture performed better (MAPE = 0.09, RMSE = 0.0008, R2 = 0.8) in predicting discharges for the study area. The study indicates that using the same sequence length for the prior and the forecast can improve the effectiveness of the LSTM model. Based on the results, using a 10-min aggregated discharge dataset reduces energy consumption, transmission bandwidth, and storage capacity. Additionally, it improves prediction performance compared to an original 5-min interval data in Ålesund city.
doi_str_mv 10.3390/w14030300
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2627848048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793264515</galeid><sourcerecordid>A793264515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3</originalsourceid><addsrcrecordid>eNpNUcFuwjAMraZNGmIc9geRdtqhLGmSEo6IwYYEAqlwrtLGhTDaMKcI8fcLYppmH2w_Pz9bchQ9M9rnfEjfzkxQHpzeRZ2EDngshGD3__LHqOf9ngYTQ6Uk7UTnFYKxZWubLXm3vtxp3IIntiEZnAHJyh5DufHXvm7IrGlhi7oFQ-YuQNnOYRuvAWuygNrhJZAMmTQtuuOFjOL1cpXNMrJwBg5XiSnqGs4Ov56ih0ofPPR-YzfaTCfr8Wc8X37MxqN5XHLO2hgkGEWFoUOemJQXlBU8lUWhVCE1k0KWSUAlLYVIqEmGlKdKVYKmkhUGoODd6OWme0T3fQLf5nt3wiaszJM0GSgR1FVg9W-srT5AbpvKtajL4AZqW7oGKhvw0SBckQrJZBh4vQ2U6LxHqPIj2lrjJWc0v_4i__sF_wEdhXmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627848048</pqid></control><display><type>article</type><title>Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Nguyen, Lam Van ; Tornyeviadzi, Hoese Michel ; Bui, Dieu Tien ; Seidu, Razak</creator><creatorcontrib>Nguyen, Lam Van ; Tornyeviadzi, Hoese Michel ; Bui, Dieu Tien ; Seidu, Razak</creatorcontrib><description>Predicting discharges in sewage systems play an essential role in reducing sewer overflows and impacts on the environment and public health. Choosing a suitable model to predict discharges in these systems is essential to realizing these aforementioned goals. Long Short-Term Memory (LSTM) has been proposed as a robust technique for predicting discharges in wastewater networks. This study explored the potential application of an LSTM model to predict discharges using 3-month data set in a sewer network in Ålesund city, Norway. Different sequence-to-sequence LSTMs were investigated using various input and output datasets. The impact of data aggregation (10-min and 30-min intervals) was examined and compared to original sensor data (5-min intervals) to evaluate the performance of the LSTM model. The results show that 50-neuron LSTM architecture performed better (MAPE = 0.09, RMSE = 0.0008, R2 = 0.8) in predicting discharges for the study area. The study indicates that using the same sequence length for the prior and the forecast can improve the effectiveness of the LSTM model. Based on the results, using a 10-min aggregated discharge dataset reduces energy consumption, transmission bandwidth, and storage capacity. Additionally, it improves prediction performance compared to an original 5-min interval data in Ålesund city.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14030300</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Big Data ; Climate change ; Datasets ; Energy conservation ; Energy consumption ; Forecasting ; Hydraulics ; Hydrology ; Long short-term memory ; Neural networks ; Pipes ; Precipitation ; Public health ; Rain ; Rain and rainfall ; Sensors ; Sewage ; Sewer pipes ; Sewer systems ; Statistical analysis ; Storage capacity ; Stormwater ; Wastewater ; Wastewater discharges</subject><ispartof>Water (Basel), 2022-02, Vol.14 (3), p.300</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3</citedby><cites>FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3</cites><orcidid>0000-0002-3137-0915 ; 0000-0003-0475-1365 ; 0000-0001-5161-6479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2627848048/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627848048?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,38514,43893,44588,74182,74896</link.rule.ids></links><search><creatorcontrib>Nguyen, Lam Van</creatorcontrib><creatorcontrib>Tornyeviadzi, Hoese Michel</creatorcontrib><creatorcontrib>Bui, Dieu Tien</creatorcontrib><creatorcontrib>Seidu, Razak</creatorcontrib><title>Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework</title><title>Water (Basel)</title><description>Predicting discharges in sewage systems play an essential role in reducing sewer overflows and impacts on the environment and public health. Choosing a suitable model to predict discharges in these systems is essential to realizing these aforementioned goals. Long Short-Term Memory (LSTM) has been proposed as a robust technique for predicting discharges in wastewater networks. This study explored the potential application of an LSTM model to predict discharges using 3-month data set in a sewer network in Ålesund city, Norway. Different sequence-to-sequence LSTMs were investigated using various input and output datasets. The impact of data aggregation (10-min and 30-min intervals) was examined and compared to original sensor data (5-min intervals) to evaluate the performance of the LSTM model. The results show that 50-neuron LSTM architecture performed better (MAPE = 0.09, RMSE = 0.0008, R2 = 0.8) in predicting discharges for the study area. The study indicates that using the same sequence length for the prior and the forecast can improve the effectiveness of the LSTM model. Based on the results, using a 10-min aggregated discharge dataset reduces energy consumption, transmission bandwidth, and storage capacity. Additionally, it improves prediction performance compared to an original 5-min interval data in Ålesund city.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Big Data</subject><subject>Climate change</subject><subject>Datasets</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Long short-term memory</subject><subject>Neural networks</subject><subject>Pipes</subject><subject>Precipitation</subject><subject>Public health</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Sensors</subject><subject>Sewage</subject><subject>Sewer pipes</subject><subject>Sewer systems</subject><subject>Statistical analysis</subject><subject>Storage capacity</subject><subject>Stormwater</subject><subject>Wastewater</subject><subject>Wastewater discharges</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpNUcFuwjAMraZNGmIc9geRdtqhLGmSEo6IwYYEAqlwrtLGhTDaMKcI8fcLYppmH2w_Pz9bchQ9M9rnfEjfzkxQHpzeRZ2EDngshGD3__LHqOf9ngYTQ6Uk7UTnFYKxZWubLXm3vtxp3IIntiEZnAHJyh5DufHXvm7IrGlhi7oFQ-YuQNnOYRuvAWuygNrhJZAMmTQtuuOFjOL1cpXNMrJwBg5XiSnqGs4Ov56ih0ofPPR-YzfaTCfr8Wc8X37MxqN5XHLO2hgkGEWFoUOemJQXlBU8lUWhVCE1k0KWSUAlLYVIqEmGlKdKVYKmkhUGoODd6OWme0T3fQLf5nt3wiaszJM0GSgR1FVg9W-srT5AbpvKtajL4AZqW7oGKhvw0SBckQrJZBh4vQ2U6LxHqPIj2lrjJWc0v_4i__sF_wEdhXmi</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nguyen, Lam Van</creator><creator>Tornyeviadzi, Hoese Michel</creator><creator>Bui, Dieu Tien</creator><creator>Seidu, Razak</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3137-0915</orcidid><orcidid>https://orcid.org/0000-0003-0475-1365</orcidid><orcidid>https://orcid.org/0000-0001-5161-6479</orcidid></search><sort><creationdate>20220201</creationdate><title>Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework</title><author>Nguyen, Lam Van ; Tornyeviadzi, Hoese Michel ; Bui, Dieu Tien ; Seidu, Razak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Big Data</topic><topic>Climate change</topic><topic>Datasets</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Long short-term memory</topic><topic>Neural networks</topic><topic>Pipes</topic><topic>Precipitation</topic><topic>Public health</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Sensors</topic><topic>Sewage</topic><topic>Sewer pipes</topic><topic>Sewer systems</topic><topic>Statistical analysis</topic><topic>Storage capacity</topic><topic>Stormwater</topic><topic>Wastewater</topic><topic>Wastewater discharges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Lam Van</creatorcontrib><creatorcontrib>Tornyeviadzi, Hoese Michel</creatorcontrib><creatorcontrib>Bui, Dieu Tien</creatorcontrib><creatorcontrib>Seidu, Razak</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Lam Van</au><au>Tornyeviadzi, Hoese Michel</au><au>Bui, Dieu Tien</au><au>Seidu, Razak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework</atitle><jtitle>Water (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>300</spage><pages>300-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Predicting discharges in sewage systems play an essential role in reducing sewer overflows and impacts on the environment and public health. Choosing a suitable model to predict discharges in these systems is essential to realizing these aforementioned goals. Long Short-Term Memory (LSTM) has been proposed as a robust technique for predicting discharges in wastewater networks. This study explored the potential application of an LSTM model to predict discharges using 3-month data set in a sewer network in Ålesund city, Norway. Different sequence-to-sequence LSTMs were investigated using various input and output datasets. The impact of data aggregation (10-min and 30-min intervals) was examined and compared to original sensor data (5-min intervals) to evaluate the performance of the LSTM model. The results show that 50-neuron LSTM architecture performed better (MAPE = 0.09, RMSE = 0.0008, R2 = 0.8) in predicting discharges for the study area. The study indicates that using the same sequence length for the prior and the forecast can improve the effectiveness of the LSTM model. Based on the results, using a 10-min aggregated discharge dataset reduces energy consumption, transmission bandwidth, and storage capacity. Additionally, it improves prediction performance compared to an original 5-min interval data in Ålesund city.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14030300</doi><orcidid>https://orcid.org/0000-0002-3137-0915</orcidid><orcidid>https://orcid.org/0000-0003-0475-1365</orcidid><orcidid>https://orcid.org/0000-0001-5161-6479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2022-02, Vol.14 (3), p.300
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2627848048
source Publicly Available Content Database; Coronavirus Research Database
subjects Algorithms
Analysis
Big Data
Climate change
Datasets
Energy conservation
Energy consumption
Forecasting
Hydraulics
Hydrology
Long short-term memory
Neural networks
Pipes
Precipitation
Public health
Rain
Rain and rainfall
Sensors
Sewage
Sewer pipes
Sewer systems
Statistical analysis
Storage capacity
Stormwater
Wastewater
Wastewater discharges
title Predicting Discharges in Sewer Pipes Using an Integrated Long Short-Term Memory and Entropy A-TOPSIS Modeling Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Discharges%20in%20Sewer%20Pipes%20Using%20an%20Integrated%20Long%20Short-Term%20Memory%20and%20Entropy%20A-TOPSIS%20Modeling%20Framework&rft.jtitle=Water%20(Basel)&rft.au=Nguyen,%20Lam%20Van&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=300&rft.pages=300-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14030300&rft_dat=%3Cgale_proqu%3EA793264515%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-e5ed804d0932d63b01b365bb88b5a1545c263b50c4420d2903688f40651bdeeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627848048&rft_id=info:pmid/&rft_galeid=A793264515&rfr_iscdi=true