Loading…
Strong density of spherical characters attached to unipotent subgroups
We prove the following result in relative representation theory of a reductive p-adic group \(G\): Let \(U\) be the unipotent radical of a minimal parabolic subgroup of \(G\), and let \(\psi\) be an arbitrary smooth character of \(U\). Let \(S \subset Irr(G)\) be a Zariski dense collection of irredu...
Saved in:
Published in: | arXiv.org 2022-02 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aizenbud, Avraham Bernstein, Joseph Sayag, Eitan |
description | We prove the following result in relative representation theory of a reductive p-adic group \(G\): Let \(U\) be the unipotent radical of a minimal parabolic subgroup of \(G\), and let \(\psi\) be an arbitrary smooth character of \(U\). Let \(S \subset Irr(G)\) be a Zariski dense collection of irreducible representations of \(G\). Then the span of the Bessel distributions \(B_{\pi}\) attached to representations \(\pi\) from \(S\) is dense in the space \(\mathcal S^*(G)^{U\times U,\psi \times \psi}\) of all \((U\times U,\psi \times \psi)\)-equivariant distributions on \(G.\) We base our proof on the following results: 1. The category of smooth representations \(\mathcal M(G)\) is Cohen-Macaulay. 2. The module \(ind_U^G(\psi)\) is a projective module. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2627868943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627868943</sourcerecordid><originalsourceid>FETCH-proquest_journals_26278689433</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLtST3pzF4q57iWl6oyQx52Tw7XXwAZz-4fs3IkEpT1lTIO5ESrTkeY5VjWUpE9HeOTg7Qm8szfwGNwD5yYRZqxX0pILSbAKBYlZ6Mj2wg2hn79hYBorPMbjo6SC2g1rJpL_uxbG9Pi63zAf3ioa4W1wM9ksdVlg3VXMupPzv-gAwnDxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627868943</pqid></control><display><type>article</type><title>Strong density of spherical characters attached to unipotent subgroups</title><source>Publicly Available Content Database</source><creator>Aizenbud, Avraham ; Bernstein, Joseph ; Sayag, Eitan</creator><creatorcontrib>Aizenbud, Avraham ; Bernstein, Joseph ; Sayag, Eitan</creatorcontrib><description>We prove the following result in relative representation theory of a reductive p-adic group \(G\): Let \(U\) be the unipotent radical of a minimal parabolic subgroup of \(G\), and let \(\psi\) be an arbitrary smooth character of \(U\). Let \(S \subset Irr(G)\) be a Zariski dense collection of irreducible representations of \(G\). Then the span of the Bessel distributions \(B_{\pi}\) attached to representations \(\pi\) from \(S\) is dense in the space \(\mathcal S^*(G)^{U\times U,\psi \times \psi}\) of all \((U\times U,\psi \times \psi)\)-equivariant distributions on \(G.\) We base our proof on the following results: 1. The category of smooth representations \(\mathcal M(G)\) is Cohen-Macaulay. 2. The module \(ind_U^G(\psi)\) is a projective module.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Modules ; Subgroups</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2627868943?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Aizenbud, Avraham</creatorcontrib><creatorcontrib>Bernstein, Joseph</creatorcontrib><creatorcontrib>Sayag, Eitan</creatorcontrib><title>Strong density of spherical characters attached to unipotent subgroups</title><title>arXiv.org</title><description>We prove the following result in relative representation theory of a reductive p-adic group \(G\): Let \(U\) be the unipotent radical of a minimal parabolic subgroup of \(G\), and let \(\psi\) be an arbitrary smooth character of \(U\). Let \(S \subset Irr(G)\) be a Zariski dense collection of irreducible representations of \(G\). Then the span of the Bessel distributions \(B_{\pi}\) attached to representations \(\pi\) from \(S\) is dense in the space \(\mathcal S^*(G)^{U\times U,\psi \times \psi}\) of all \((U\times U,\psi \times \psi)\)-equivariant distributions on \(G.\) We base our proof on the following results: 1. The category of smooth representations \(\mathcal M(G)\) is Cohen-Macaulay. 2. The module \(ind_U^G(\psi)\) is a projective module.</description><subject>Modules</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLtST3pzF4q57iWl6oyQx52Tw7XXwAZz-4fs3IkEpT1lTIO5ESrTkeY5VjWUpE9HeOTg7Qm8szfwGNwD5yYRZqxX0pILSbAKBYlZ6Mj2wg2hn79hYBorPMbjo6SC2g1rJpL_uxbG9Pi63zAf3ioa4W1wM9ksdVlg3VXMupPzv-gAwnDxX</recordid><startdate>20220210</startdate><enddate>20220210</enddate><creator>Aizenbud, Avraham</creator><creator>Bernstein, Joseph</creator><creator>Sayag, Eitan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220210</creationdate><title>Strong density of spherical characters attached to unipotent subgroups</title><author>Aizenbud, Avraham ; Bernstein, Joseph ; Sayag, Eitan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26278689433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Modules</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Aizenbud, Avraham</creatorcontrib><creatorcontrib>Bernstein, Joseph</creatorcontrib><creatorcontrib>Sayag, Eitan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aizenbud, Avraham</au><au>Bernstein, Joseph</au><au>Sayag, Eitan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Strong density of spherical characters attached to unipotent subgroups</atitle><jtitle>arXiv.org</jtitle><date>2022-02-10</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We prove the following result in relative representation theory of a reductive p-adic group \(G\): Let \(U\) be the unipotent radical of a minimal parabolic subgroup of \(G\), and let \(\psi\) be an arbitrary smooth character of \(U\). Let \(S \subset Irr(G)\) be a Zariski dense collection of irreducible representations of \(G\). Then the span of the Bessel distributions \(B_{\pi}\) attached to representations \(\pi\) from \(S\) is dense in the space \(\mathcal S^*(G)^{U\times U,\psi \times \psi}\) of all \((U\times U,\psi \times \psi)\)-equivariant distributions on \(G.\) We base our proof on the following results: 1. The category of smooth representations \(\mathcal M(G)\) is Cohen-Macaulay. 2. The module \(ind_U^G(\psi)\) is a projective module.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2627868943 |
source | Publicly Available Content Database |
subjects | Modules Subgroups |
title | Strong density of spherical characters attached to unipotent subgroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Strong%20density%20of%20spherical%20characters%20attached%20to%20unipotent%20subgroups&rft.jtitle=arXiv.org&rft.au=Aizenbud,%20Avraham&rft.date=2022-02-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2627868943%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26278689433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627868943&rft_id=info:pmid/&rfr_iscdi=true |