Loading…

Detection of Trace Amounts of Explosives in the Presence of Lactic Acid by Ion Mobility Spectrometry

The effect of fingerprint sweat deposits on the detection efficiency of trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, 2,4,6-trinitrotoluene, and 2,4,6-trinitrophenol is studied by atmospheric pressure ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical chemistry (New York, N.Y.) N.Y.), 2022, Vol.77 (1), p.43-52
Main Authors: Buryakov, T. I., Buryakov, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893
cites cdi_FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893
container_end_page 52
container_issue 1
container_start_page 43
container_title Journal of analytical chemistry (New York, N.Y.)
container_volume 77
creator Buryakov, T. I.
Buryakov, I. A.
description The effect of fingerprint sweat deposits on the detection efficiency of trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, 2,4,6-trinitrotoluene, and 2,4,6-trinitrophenol is studied by atmospheric pressure chemical ionization ion mobility spectrometry in the negative ion mode in air. Lactic (2-hydroxypropanoic) acid is the main component of the fingerprint that can possess this effect. The presence of lactic acid or a fingerprint in the sample does not significantly affect the efficiency of tetryl detection; although it changes the qualitative composition of pentaerythritol tetranitrate and RDX ions, causing the appearance of intense peaks in the spectrum, presumably, adducts of ions of these substances with lactic acid molecules, and dramatically impairs the efficiency of the formation of ions of other explosives. The limits of detection for trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, and 2,4,6-trinitrotoluene are 1, 2.5, 3, 4, 0.7, 5, 20, and 0.5 ng, and in the presence of a fingerprint with abundant sweat deposits, their values are 0.5, 2000, 1 × 10 5 , 2, 0.7, 5000, 300, and 100 ng, respectively. The limit of detection for 2,4,6-trinitrophenol is 30 ng; in the presence of a fingerprint, its value has not been determined.
doi_str_mv 10.1134/S1061934821120030
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2627989614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693213479</galeid><sourcerecordid>A693213479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhQdR8PkD3AVcuZiaZB6dLEt9FSqK1XXIZG5qykxSk1Taf2-GClKsBJJw7ndOyL1JcknwgJAsv5kRXBKW5RUlhGKc4YPkhJS4SjPC2GG8x3La14-TU-8XGGNWkfIkaW4hgAzaGmQVenNCAhp1dmWC74W79bK1Xn-BR9qg8AHoxYEHE6lYnYrolGgkdYPqDZrEkCdb61aHDZotY6yzHQS3OU-OlGg9XPycZ8n7_d3b-DGdPj9MxqNpKrOqCGlOZSEwq8t-p4wqKJRsqkKIHCQhCosqk4JQYFFUMi8gL-q6qfGQqUJULDtLrra5S2c_V-ADX9iVM_FJTks6ZBUrSf5LzUULXBtlQ_x2p73ko5JlNLZz2Gele6g5GHCitQaUjvIOP9jDx9VAp-Vew_WOITIB1mEuVt7zyex1lyVbVjrrvQPFl053wm04wbyfP_8z_-ihW4-PrJmD-23G_6Zv0u6uzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627989614</pqid></control><display><type>article</type><title>Detection of Trace Amounts of Explosives in the Presence of Lactic Acid by Ion Mobility Spectrometry</title><source>Springer Nature</source><creator>Buryakov, T. I. ; Buryakov, I. A.</creator><creatorcontrib>Buryakov, T. I. ; Buryakov, I. A.</creatorcontrib><description>The effect of fingerprint sweat deposits on the detection efficiency of trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, 2,4,6-trinitrotoluene, and 2,4,6-trinitrophenol is studied by atmospheric pressure chemical ionization ion mobility spectrometry in the negative ion mode in air. Lactic (2-hydroxypropanoic) acid is the main component of the fingerprint that can possess this effect. The presence of lactic acid or a fingerprint in the sample does not significantly affect the efficiency of tetryl detection; although it changes the qualitative composition of pentaerythritol tetranitrate and RDX ions, causing the appearance of intense peaks in the spectrum, presumably, adducts of ions of these substances with lactic acid molecules, and dramatically impairs the efficiency of the formation of ions of other explosives. The limits of detection for trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, and 2,4,6-trinitrotoluene are 1, 2.5, 3, 4, 0.7, 5, 20, and 0.5 ng, and in the presence of a fingerprint with abundant sweat deposits, their values are 0.5, 2000, 1 × 10 5 , 2, 0.7, 5000, 300, and 100 ng, respectively. The limit of detection for 2,4,6-trinitrophenol is 30 ng; in the presence of a fingerprint, its value has not been determined.</description><identifier>ISSN: 1061-9348</identifier><identifier>EISSN: 1608-3199</identifier><identifier>DOI: 10.1134/S1061934821120030</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acids ; Adducts ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Efficiency ; Explosives ; Explosives detection ; Fingerprints ; Ionic mobility ; Ionization ; Ions ; Lactic acid ; Negative ions ; PETN ; Polyols ; RDX ; Scientific imaging ; Spectrometry ; Spectroscopy ; Spectrum analysis ; Sweat ; Tetryl ; Trinitrotoluene</subject><ispartof>Journal of analytical chemistry (New York, N.Y.), 2022, Vol.77 (1), p.43-52</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1061-9348, Journal of Analytical Chemistry, 2022, Vol. 77, No. 1, pp. 43–52. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Analiticheskoi Khimii, 2022, Vol. 77, No. 1, pp. 28–38.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893</citedby><cites>FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Buryakov, T. I.</creatorcontrib><creatorcontrib>Buryakov, I. A.</creatorcontrib><title>Detection of Trace Amounts of Explosives in the Presence of Lactic Acid by Ion Mobility Spectrometry</title><title>Journal of analytical chemistry (New York, N.Y.)</title><addtitle>J Anal Chem</addtitle><description>The effect of fingerprint sweat deposits on the detection efficiency of trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, 2,4,6-trinitrotoluene, and 2,4,6-trinitrophenol is studied by atmospheric pressure chemical ionization ion mobility spectrometry in the negative ion mode in air. Lactic (2-hydroxypropanoic) acid is the main component of the fingerprint that can possess this effect. The presence of lactic acid or a fingerprint in the sample does not significantly affect the efficiency of tetryl detection; although it changes the qualitative composition of pentaerythritol tetranitrate and RDX ions, causing the appearance of intense peaks in the spectrum, presumably, adducts of ions of these substances with lactic acid molecules, and dramatically impairs the efficiency of the formation of ions of other explosives. The limits of detection for trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, and 2,4,6-trinitrotoluene are 1, 2.5, 3, 4, 0.7, 5, 20, and 0.5 ng, and in the presence of a fingerprint with abundant sweat deposits, their values are 0.5, 2000, 1 × 10 5 , 2, 0.7, 5000, 300, and 100 ng, respectively. The limit of detection for 2,4,6-trinitrophenol is 30 ng; in the presence of a fingerprint, its value has not been determined.</description><subject>Acids</subject><subject>Adducts</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Efficiency</subject><subject>Explosives</subject><subject>Explosives detection</subject><subject>Fingerprints</subject><subject>Ionic mobility</subject><subject>Ionization</subject><subject>Ions</subject><subject>Lactic acid</subject><subject>Negative ions</subject><subject>PETN</subject><subject>Polyols</subject><subject>RDX</subject><subject>Scientific imaging</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sweat</subject><subject>Tetryl</subject><subject>Trinitrotoluene</subject><issn>1061-9348</issn><issn>1608-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhQdR8PkD3AVcuZiaZB6dLEt9FSqK1XXIZG5qykxSk1Taf2-GClKsBJJw7ndOyL1JcknwgJAsv5kRXBKW5RUlhGKc4YPkhJS4SjPC2GG8x3La14-TU-8XGGNWkfIkaW4hgAzaGmQVenNCAhp1dmWC74W79bK1Xn-BR9qg8AHoxYEHE6lYnYrolGgkdYPqDZrEkCdb61aHDZotY6yzHQS3OU-OlGg9XPycZ8n7_d3b-DGdPj9MxqNpKrOqCGlOZSEwq8t-p4wqKJRsqkKIHCQhCosqk4JQYFFUMi8gL-q6qfGQqUJULDtLrra5S2c_V-ADX9iVM_FJTks6ZBUrSf5LzUULXBtlQ_x2p73ko5JlNLZz2Gele6g5GHCitQaUjvIOP9jDx9VAp-Vew_WOITIB1mEuVt7zyex1lyVbVjrrvQPFl053wm04wbyfP_8z_-ihW4-PrJmD-23G_6Zv0u6uzQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Buryakov, T. I.</creator><creator>Buryakov, I. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2022</creationdate><title>Detection of Trace Amounts of Explosives in the Presence of Lactic Acid by Ion Mobility Spectrometry</title><author>Buryakov, T. I. ; Buryakov, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Adducts</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Efficiency</topic><topic>Explosives</topic><topic>Explosives detection</topic><topic>Fingerprints</topic><topic>Ionic mobility</topic><topic>Ionization</topic><topic>Ions</topic><topic>Lactic acid</topic><topic>Negative ions</topic><topic>PETN</topic><topic>Polyols</topic><topic>RDX</topic><topic>Scientific imaging</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sweat</topic><topic>Tetryl</topic><topic>Trinitrotoluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buryakov, T. I.</creatorcontrib><creatorcontrib>Buryakov, I. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buryakov, T. I.</au><au>Buryakov, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Trace Amounts of Explosives in the Presence of Lactic Acid by Ion Mobility Spectrometry</atitle><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle><stitle>J Anal Chem</stitle><date>2022</date><risdate>2022</risdate><volume>77</volume><issue>1</issue><spage>43</spage><epage>52</epage><pages>43-52</pages><issn>1061-9348</issn><eissn>1608-3199</eissn><abstract>The effect of fingerprint sweat deposits on the detection efficiency of trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, 2,4,6-trinitrotoluene, and 2,4,6-trinitrophenol is studied by atmospheric pressure chemical ionization ion mobility spectrometry in the negative ion mode in air. Lactic (2-hydroxypropanoic) acid is the main component of the fingerprint that can possess this effect. The presence of lactic acid or a fingerprint in the sample does not significantly affect the efficiency of tetryl detection; although it changes the qualitative composition of pentaerythritol tetranitrate and RDX ions, causing the appearance of intense peaks in the spectrum, presumably, adducts of ions of these substances with lactic acid molecules, and dramatically impairs the efficiency of the formation of ions of other explosives. The limits of detection for trace amounts of RDX, dinitronaphthalene, 2,4-dinitrotoluene, pentaerythritol tetranitrate, tetryl, 1,3,5-trinitrobenzene, trinitroresorcinol, and 2,4,6-trinitrotoluene are 1, 2.5, 3, 4, 0.7, 5, 20, and 0.5 ng, and in the presence of a fingerprint with abundant sweat deposits, their values are 0.5, 2000, 1 × 10 5 , 2, 0.7, 5000, 300, and 100 ng, respectively. The limit of detection for 2,4,6-trinitrophenol is 30 ng; in the presence of a fingerprint, its value has not been determined.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061934821120030</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9348
ispartof Journal of analytical chemistry (New York, N.Y.), 2022, Vol.77 (1), p.43-52
issn 1061-9348
1608-3199
language eng
recordid cdi_proquest_journals_2627989614
source Springer Nature
subjects Acids
Adducts
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Efficiency
Explosives
Explosives detection
Fingerprints
Ionic mobility
Ionization
Ions
Lactic acid
Negative ions
PETN
Polyols
RDX
Scientific imaging
Spectrometry
Spectroscopy
Spectrum analysis
Sweat
Tetryl
Trinitrotoluene
title Detection of Trace Amounts of Explosives in the Presence of Lactic Acid by Ion Mobility Spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Trace%20Amounts%20of%20Explosives%20in%20the%20Presence%20of%20Lactic%20Acid%20by%20Ion%20Mobility%20Spectrometry&rft.jtitle=Journal%20of%20analytical%20chemistry%20(New%20York,%20N.Y.)&rft.au=Buryakov,%20T.%20I.&rft.date=2022&rft.volume=77&rft.issue=1&rft.spage=43&rft.epage=52&rft.pages=43-52&rft.issn=1061-9348&rft.eissn=1608-3199&rft_id=info:doi/10.1134/S1061934821120030&rft_dat=%3Cgale_proqu%3EA693213479%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-42c5a09b65a09292fe5fcd85aa4ec11f0a83ca12e9d85fc45e45bbdb079f5a893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627989614&rft_id=info:pmid/&rft_galeid=A693213479&rfr_iscdi=true