Loading…
Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities
In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific C...
Saved in:
Published in: | Nonlinear dynamics 2022-02, Vol.107 (3), p.2819-2846 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633 |
container_end_page | 2846 |
container_issue | 3 |
container_start_page | 2819 |
container_title | Nonlinear dynamics |
container_volume | 107 |
creator | Camara, B. I. Mokrani, H. Diouf, A. Sané, I. Diallo, A. S. |
description | In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response. |
doi_str_mv | 10.1007/s11071-021-07074-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628405364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJR9PWmyx-wYIHFfYW0jR1s3SbNcmKBX-8qRW8eRgGZp73TeZF6JzAJQEorgIhUJAMaKoCCp4NB2hG8oJlVFSrQzSDivIMKlgdo5MQNgDAKJQz9PUcnV6rEK3GW9eYDqtedUOwAbsWa9Vr47HrteuGEfmwfh9wXBuvdsM1Nkm3VdG6fqTTGJvPaHv9M9ka1eO0NyF5NuPWerzzrla17Wy0Jpyio1Z1wZz99jl6vbt9WTxky6f7x8XNMtOMVDGrgdbE8IrVDDQoriiwqmmbkqtcNG1uNIGSVqwRNdFG5A0XuS6hyAkzigrG5uhi8k2vv-_Tp-XG7X26M0gqaMkhZ4Inik6U9i4Eb1q58-k6P0gCckxZTinLlLL8SVkOScQmUUhw_2b8n_U_qm-ENoLm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405364</pqid></control><display><type>article</type><title>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</title><source>Springer Nature</source><creator>Camara, B. I. ; Mokrani, H. ; Diouf, A. ; Sané, I. ; Diallo, A. S.</creator><creatorcontrib>Camara, B. I. ; Mokrani, H. ; Diouf, A. ; Sané, I. ; Diallo, A. S.</creatorcontrib><description>In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07074-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Cancer ; Classical Mechanics ; Control ; Depletion ; Differential equations ; Diffusion rate ; Dynamical Systems ; Engineering ; Extinction ; Immunotherapy ; Lymphocytes ; Mechanical Engineering ; Original Paper ; Parameter sensitivity ; Robustness (mathematics) ; Stochastic models ; Stochastic systems ; Toxicity ; Tumors ; Vibration ; Viruses</subject><ispartof>Nonlinear dynamics, 2022-02, Vol.107 (3), p.2819-2846</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</citedby><cites>FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</cites><orcidid>0000-0003-0921-7938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Camara, B. I.</creatorcontrib><creatorcontrib>Mokrani, H.</creatorcontrib><creatorcontrib>Diouf, A.</creatorcontrib><creatorcontrib>Sané, I.</creatorcontrib><creatorcontrib>Diallo, A. S.</creatorcontrib><title>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Cancer</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Depletion</subject><subject>Differential equations</subject><subject>Diffusion rate</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Extinction</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parameter sensitivity</subject><subject>Robustness (mathematics)</subject><subject>Stochastic models</subject><subject>Stochastic systems</subject><subject>Toxicity</subject><subject>Tumors</subject><subject>Vibration</subject><subject>Viruses</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJR9PWmyx-wYIHFfYW0jR1s3SbNcmKBX-8qRW8eRgGZp73TeZF6JzAJQEorgIhUJAMaKoCCp4NB2hG8oJlVFSrQzSDivIMKlgdo5MQNgDAKJQz9PUcnV6rEK3GW9eYDqtedUOwAbsWa9Vr47HrteuGEfmwfh9wXBuvdsM1Nkm3VdG6fqTTGJvPaHv9M9ka1eO0NyF5NuPWerzzrla17Wy0Jpyio1Z1wZz99jl6vbt9WTxky6f7x8XNMtOMVDGrgdbE8IrVDDQoriiwqmmbkqtcNG1uNIGSVqwRNdFG5A0XuS6hyAkzigrG5uhi8k2vv-_Tp-XG7X26M0gqaMkhZ4Inik6U9i4Eb1q58-k6P0gCckxZTinLlLL8SVkOScQmUUhw_2b8n_U_qm-ENoLm</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Camara, B. I.</creator><creator>Mokrani, H.</creator><creator>Diouf, A.</creator><creator>Sané, I.</creator><creator>Diallo, A. S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0921-7938</orcidid></search><sort><creationdate>20220201</creationdate><title>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</title><author>Camara, B. I. ; Mokrani, H. ; Diouf, A. ; Sané, I. ; Diallo, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Cancer</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Depletion</topic><topic>Differential equations</topic><topic>Diffusion rate</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Extinction</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parameter sensitivity</topic><topic>Robustness (mathematics)</topic><topic>Stochastic models</topic><topic>Stochastic systems</topic><topic>Toxicity</topic><topic>Tumors</topic><topic>Vibration</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camara, B. I.</creatorcontrib><creatorcontrib>Mokrani, H.</creatorcontrib><creatorcontrib>Diouf, A.</creatorcontrib><creatorcontrib>Sané, I.</creatorcontrib><creatorcontrib>Diallo, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camara, B. I.</au><au>Mokrani, H.</au><au>Diouf, A.</au><au>Sané, I.</au><au>Diallo, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>107</volume><issue>3</issue><spage>2819</spage><epage>2846</epage><pages>2819-2846</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07074-y</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-0921-7938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2022-02, Vol.107 (3), p.2819-2846 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2628405364 |
source | Springer Nature |
subjects | Algorithms Automotive Engineering Cancer Classical Mechanics Control Depletion Differential equations Diffusion rate Dynamical Systems Engineering Extinction Immunotherapy Lymphocytes Mechanical Engineering Original Paper Parameter sensitivity Robustness (mathematics) Stochastic models Stochastic systems Toxicity Tumors Vibration Viruses |
title | Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20model%20analysis%20of%20cancer%20oncolytic%20virus%20therapy:%20estimation%20of%20the%20extinction%20mean%20times%20and%20their%20probabilities&rft.jtitle=Nonlinear%20dynamics&rft.au=Camara,%20B.%20I.&rft.date=2022-02-01&rft.volume=107&rft.issue=3&rft.spage=2819&rft.epage=2846&rft.pages=2819-2846&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07074-y&rft_dat=%3Cproquest_cross%3E2628405364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628405364&rft_id=info:pmid/&rfr_iscdi=true |