Loading…

Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities

In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific C...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2022-02, Vol.107 (3), p.2819-2846
Main Authors: Camara, B. I., Mokrani, H., Diouf, A., Sané, I., Diallo, A. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633
cites cdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633
container_end_page 2846
container_issue 3
container_start_page 2819
container_title Nonlinear dynamics
container_volume 107
creator Camara, B. I.
Mokrani, H.
Diouf, A.
Sané, I.
Diallo, A. S.
description In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.
doi_str_mv 10.1007/s11071-021-07074-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2628405364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628405364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJR9PWmyx-wYIHFfYW0jR1s3SbNcmKBX-8qRW8eRgGZp73TeZF6JzAJQEorgIhUJAMaKoCCp4NB2hG8oJlVFSrQzSDivIMKlgdo5MQNgDAKJQz9PUcnV6rEK3GW9eYDqtedUOwAbsWa9Vr47HrteuGEfmwfh9wXBuvdsM1Nkm3VdG6fqTTGJvPaHv9M9ka1eO0NyF5NuPWerzzrla17Wy0Jpyio1Z1wZz99jl6vbt9WTxky6f7x8XNMtOMVDGrgdbE8IrVDDQoriiwqmmbkqtcNG1uNIGSVqwRNdFG5A0XuS6hyAkzigrG5uhi8k2vv-_Tp-XG7X26M0gqaMkhZ4Inik6U9i4Eb1q58-k6P0gCckxZTinLlLL8SVkOScQmUUhw_2b8n_U_qm-ENoLm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628405364</pqid></control><display><type>article</type><title>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</title><source>Springer Nature</source><creator>Camara, B. I. ; Mokrani, H. ; Diouf, A. ; Sané, I. ; Diallo, A. S.</creator><creatorcontrib>Camara, B. I. ; Mokrani, H. ; Diouf, A. ; Sané, I. ; Diallo, A. S.</creatorcontrib><description>In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-07074-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Cancer ; Classical Mechanics ; Control ; Depletion ; Differential equations ; Diffusion rate ; Dynamical Systems ; Engineering ; Extinction ; Immunotherapy ; Lymphocytes ; Mechanical Engineering ; Original Paper ; Parameter sensitivity ; Robustness (mathematics) ; Stochastic models ; Stochastic systems ; Toxicity ; Tumors ; Vibration ; Viruses</subject><ispartof>Nonlinear dynamics, 2022-02, Vol.107 (3), p.2819-2846</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</citedby><cites>FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</cites><orcidid>0000-0003-0921-7938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Camara, B. I.</creatorcontrib><creatorcontrib>Mokrani, H.</creatorcontrib><creatorcontrib>Diouf, A.</creatorcontrib><creatorcontrib>Sané, I.</creatorcontrib><creatorcontrib>Diallo, A. S.</creatorcontrib><title>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Cancer</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Depletion</subject><subject>Differential equations</subject><subject>Diffusion rate</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Extinction</subject><subject>Immunotherapy</subject><subject>Lymphocytes</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Parameter sensitivity</subject><subject>Robustness (mathematics)</subject><subject>Stochastic models</subject><subject>Stochastic systems</subject><subject>Toxicity</subject><subject>Tumors</subject><subject>Vibration</subject><subject>Viruses</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJR9PWmyx-wYIHFfYW0jR1s3SbNcmKBX-8qRW8eRgGZp73TeZF6JzAJQEorgIhUJAMaKoCCp4NB2hG8oJlVFSrQzSDivIMKlgdo5MQNgDAKJQz9PUcnV6rEK3GW9eYDqtedUOwAbsWa9Vr47HrteuGEfmwfh9wXBuvdsM1Nkm3VdG6fqTTGJvPaHv9M9ka1eO0NyF5NuPWerzzrla17Wy0Jpyio1Z1wZz99jl6vbt9WTxky6f7x8XNMtOMVDGrgdbE8IrVDDQoriiwqmmbkqtcNG1uNIGSVqwRNdFG5A0XuS6hyAkzigrG5uhi8k2vv-_Tp-XG7X26M0gqaMkhZ4Inik6U9i4Eb1q58-k6P0gCckxZTinLlLL8SVkOScQmUUhw_2b8n_U_qm-ENoLm</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Camara, B. I.</creator><creator>Mokrani, H.</creator><creator>Diouf, A.</creator><creator>Sané, I.</creator><creator>Diallo, A. S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0921-7938</orcidid></search><sort><creationdate>20220201</creationdate><title>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</title><author>Camara, B. I. ; Mokrani, H. ; Diouf, A. ; Sané, I. ; Diallo, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Cancer</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Depletion</topic><topic>Differential equations</topic><topic>Diffusion rate</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Extinction</topic><topic>Immunotherapy</topic><topic>Lymphocytes</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Parameter sensitivity</topic><topic>Robustness (mathematics)</topic><topic>Stochastic models</topic><topic>Stochastic systems</topic><topic>Toxicity</topic><topic>Tumors</topic><topic>Vibration</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camara, B. I.</creatorcontrib><creatorcontrib>Mokrani, H.</creatorcontrib><creatorcontrib>Diouf, A.</creatorcontrib><creatorcontrib>Sané, I.</creatorcontrib><creatorcontrib>Diallo, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camara, B. I.</au><au>Mokrani, H.</au><au>Diouf, A.</au><au>Sané, I.</au><au>Diallo, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>107</volume><issue>3</issue><spage>2819</spage><epage>2846</epage><pages>2819-2846</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, we propose a mathematical model on the oncolytic virotherapy incorporating virus-specific cytotoxic T lymphocyte (CTL) response, which contribute to killing infected tumor cells. In order to improve the understanding of the dynamic interactions between tumor cells and virus-specific CTLs, stochastic differential equation models are constructed. We obtain sufficient conditions for existence, persistence and extinction of the stochastic system. In relation to the therapy control, we also analyze the stochasticity role of equilibrium point stabilities. The Monte Carlo algorithm is used to estimate the mean extinction time and the extinction probability of cancer cells or viruses-specific CTLs. Our simulations highlighted the switch of the system leaving the attractor basin of the three species co-existence equilibrium toward that of cancer cell extinction or that of virus-specific CTLs depletion. This allowed us to characterize the spaces of cancer control parameters. Finally, we determine the model solution robustness by analyzing the sensitivity of the model characteristic parameters. Our results demonstrate the high dependence of the virotherapy success or failure on the combination of stochastic diffusion parameters with the maximum per capita growth rate of uninfected tumor cells, the transmission rate, the viral cytotoxicity and the strength of the CTL response.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-07074-y</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-0921-7938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2022-02, Vol.107 (3), p.2819-2846
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2628405364
source Springer Nature
subjects Algorithms
Automotive Engineering
Cancer
Classical Mechanics
Control
Depletion
Differential equations
Diffusion rate
Dynamical Systems
Engineering
Extinction
Immunotherapy
Lymphocytes
Mechanical Engineering
Original Paper
Parameter sensitivity
Robustness (mathematics)
Stochastic models
Stochastic systems
Toxicity
Tumors
Vibration
Viruses
title Stochastic model analysis of cancer oncolytic virus therapy: estimation of the extinction mean times and their probabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20model%20analysis%20of%20cancer%20oncolytic%20virus%20therapy:%20estimation%20of%20the%20extinction%20mean%20times%20and%20their%20probabilities&rft.jtitle=Nonlinear%20dynamics&rft.au=Camara,%20B.%20I.&rft.date=2022-02-01&rft.volume=107&rft.issue=3&rft.spage=2819&rft.epage=2846&rft.pages=2819-2846&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-07074-y&rft_dat=%3Cproquest_cross%3E2628405364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b02b1e493b30c0a4a2039dfd84a56df5ec108293d6b1ce65d465c807513ea2633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628405364&rft_id=info:pmid/&rfr_iscdi=true