Loading…

Vitamin E Exerts Neuroprotective Effects in Pentylenetetrazole Kindling Epilepsy via Suppression of Ferroptosis

Epilepsy is one of the most common chronic neurological diseases. There is increasing evidence for ferroptosis playing an important role in the occurrence and development of epilepsy. Vitamin E is a common fat-soluble antioxidant that can regulate ferroptosis. The aim of this study was to investigat...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemical research 2022-03, Vol.47 (3), p.739-747
Main Authors: Zhang, Xinfan, Wu, Shuhua, Guo, Chong, Guo, Ke, Hu, Zhongbo, Peng, Jiangtao, Zhang, Zhao, Li, Jianmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epilepsy is one of the most common chronic neurological diseases. There is increasing evidence for ferroptosis playing an important role in the occurrence and development of epilepsy. Vitamin E is a common fat-soluble antioxidant that can regulate ferroptosis. The aim of this study was to investigate the effects of vitamin E on ferroptosis of hippocampal neurons in epileptic rats. Sixty-four male Sprague–Dawley (SD) rats were randomly divided into control, pentylenetetrazol (PTZ; 35 mg/kg), vitamin E (200 mg/kg) + PTZ, and Ferrostatin-1 (Fer-1; 2.5 μmol/kg) + PTZ groups, with drugs administered intraperitoneally 15 times every other day for 29 days. The behavioral manifestations (epileptic score, latency, and number of seizures in 30 min) and EEG changes were observed and recorded. Nissl staining and electrophysiological recording were used to assess neuronal damage and excitability in the hippocampal CA1 region, respectively. The levels of iron, glutathione (GSH), and malondialdehyde (MDA) in the hippocampus were assessed by spectrophotometry. Immunofluorescence staining was used to detect lipoxygenase 15 (15-LOX) expression. Western blot was used to determine glutathione peroxidase 4 (GPX4) and 15-LOX protein levels. Vitamin E treatment was associated with decreased epileptic grade, seizure latency, and number of seizures in the PTZ-kindled epileptic model. Vitamin E treatment also decreased 15-LOX expression, inhibited MDA and iron accumulation, and increased GPX4 and GSH expression. In conclusion, vitamin E can reduce neuronal ferroptosis and seizures by inhibiting 15-LOX expression.
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-021-03483-y