Loading…
Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel
In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmo...
Saved in:
Published in: | arXiv.org 2022-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jun-Sik Sin Nam-Hyok Kim Chol-Ho, Kim Yong-Man, Jang |
description | In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications. |
doi_str_mv | 10.48550/arxiv.2202.06451 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628907266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628907266</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-42724f7ba83418429d94815650d522870bee99ea58db0d7163428dbc2ff6e5bf3</originalsourceid><addsrcrecordid>eNotjstqwzAUREWh0JDmA7oTdG1XvnpYXpbQRyCQTfZBtiWq1L1yJTmUfH0F7WqGgTMzhDw0rBZaSvZk4o-_1AAMaqaEbG7ICjhvKi0A7sgmpTNjDFQLUvIV8Tt002JxsDQ4msJ0sZjpHCYT_dVkH5AaHCkGrBb0LsQvWjI_0OSvBUFqJzvkGD492lziHA2mOcRMfSEpGgzDh0G00z25dWZKdvOva3J8fTlu36v94W23fd5XRoKqBLQgXNsbzUVTLndjJ3QjlWSjBNAt663tOmukHns2to3iAoodwDllZe_4mjz-1c4xfC825dM5LBHL4gkU6I61oBT_BS-yWk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628907266</pqid></control><display><type>article</type><title>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jun-Sik Sin ; Nam-Hyok Kim ; Chol-Ho, Kim ; Yong-Man, Jang</creator><creatorcontrib>Jun-Sik Sin ; Nam-Hyok Kim ; Chol-Ho, Kim ; Yong-Man, Jang</creatorcontrib><description>In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2202.06451</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aqueous electrolytes ; Bulk density ; Electrokinetics ; Electrolytes ; Fluidics ; Industrial applications ; Mean field theory ; Nanochannels ; Nanofluids ; Polarization ; Size effects ; Solvents ; Streaming potential ; Zeta potential</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2628907266?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Jun-Sik Sin</creatorcontrib><creatorcontrib>Nam-Hyok Kim</creatorcontrib><creatorcontrib>Chol-Ho, Kim</creatorcontrib><creatorcontrib>Yong-Man, Jang</creatorcontrib><title>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</title><title>arXiv.org</title><description>In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.</description><subject>Aqueous electrolytes</subject><subject>Bulk density</subject><subject>Electrokinetics</subject><subject>Electrolytes</subject><subject>Fluidics</subject><subject>Industrial applications</subject><subject>Mean field theory</subject><subject>Nanochannels</subject><subject>Nanofluids</subject><subject>Polarization</subject><subject>Size effects</subject><subject>Solvents</subject><subject>Streaming potential</subject><subject>Zeta potential</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAUREWh0JDmA7oTdG1XvnpYXpbQRyCQTfZBtiWq1L1yJTmUfH0F7WqGgTMzhDw0rBZaSvZk4o-_1AAMaqaEbG7ICjhvKi0A7sgmpTNjDFQLUvIV8Tt002JxsDQ4msJ0sZjpHCYT_dVkH5AaHCkGrBb0LsQvWjI_0OSvBUFqJzvkGD492lziHA2mOcRMfSEpGgzDh0G00z25dWZKdvOva3J8fTlu36v94W23fd5XRoKqBLQgXNsbzUVTLndjJ3QjlWSjBNAt663tOmukHns2to3iAoodwDllZe_4mjz-1c4xfC825dM5LBHL4gkU6I61oBT_BS-yWk4</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Jun-Sik Sin</creator><creator>Nam-Hyok Kim</creator><creator>Chol-Ho, Kim</creator><creator>Yong-Man, Jang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220214</creationdate><title>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</title><author>Jun-Sik Sin ; Nam-Hyok Kim ; Chol-Ho, Kim ; Yong-Man, Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-42724f7ba83418429d94815650d522870bee99ea58db0d7163428dbc2ff6e5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous electrolytes</topic><topic>Bulk density</topic><topic>Electrokinetics</topic><topic>Electrolytes</topic><topic>Fluidics</topic><topic>Industrial applications</topic><topic>Mean field theory</topic><topic>Nanochannels</topic><topic>Nanofluids</topic><topic>Polarization</topic><topic>Size effects</topic><topic>Solvents</topic><topic>Streaming potential</topic><topic>Zeta potential</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun-Sik Sin</creatorcontrib><creatorcontrib>Nam-Hyok Kim</creatorcontrib><creatorcontrib>Chol-Ho, Kim</creatorcontrib><creatorcontrib>Yong-Man, Jang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun-Sik Sin</au><au>Nam-Hyok Kim</au><au>Chol-Ho, Kim</au><au>Yong-Man, Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</atitle><jtitle>arXiv.org</jtitle><date>2022-02-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2202.06451</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2628907266 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Aqueous electrolytes Bulk density Electrokinetics Electrolytes Fluidics Industrial applications Mean field theory Nanochannels Nanofluids Polarization Size effects Solvents Streaming potential Zeta potential |
title | Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20solvent%20polarization%20and%20non-uniform%20ionic%20size%20on%20electrokinetic%20transport%20in%20a%20nanochannel&rft.jtitle=arXiv.org&rft.au=Jun-Sik%20Sin&rft.date=2022-02-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2202.06451&rft_dat=%3Cproquest%3E2628907266%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-42724f7ba83418429d94815650d522870bee99ea58db0d7163428dbc2ff6e5bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628907266&rft_id=info:pmid/&rfr_iscdi=true |