Loading…

Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel

In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-02
Main Authors: Jun-Sik Sin, Nam-Hyok Kim, Chol-Ho, Kim, Yong-Man, Jang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jun-Sik Sin
Nam-Hyok Kim
Chol-Ho, Kim
Yong-Man, Jang
description In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.
doi_str_mv 10.48550/arxiv.2202.06451
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2628907266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628907266</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-42724f7ba83418429d94815650d522870bee99ea58db0d7163428dbc2ff6e5bf3</originalsourceid><addsrcrecordid>eNotjstqwzAUREWh0JDmA7oTdG1XvnpYXpbQRyCQTfZBtiWq1L1yJTmUfH0F7WqGgTMzhDw0rBZaSvZk4o-_1AAMaqaEbG7ICjhvKi0A7sgmpTNjDFQLUvIV8Tt002JxsDQ4msJ0sZjpHCYT_dVkH5AaHCkGrBb0LsQvWjI_0OSvBUFqJzvkGD492lziHA2mOcRMfSEpGgzDh0G00z25dWZKdvOva3J8fTlu36v94W23fd5XRoKqBLQgXNsbzUVTLndjJ3QjlWSjBNAt663tOmukHns2to3iAoodwDllZe_4mjz-1c4xfC825dM5LBHL4gkU6I61oBT_BS-yWk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628907266</pqid></control><display><type>article</type><title>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Jun-Sik Sin ; Nam-Hyok Kim ; Chol-Ho, Kim ; Yong-Man, Jang</creator><creatorcontrib>Jun-Sik Sin ; Nam-Hyok Kim ; Chol-Ho, Kim ; Yong-Man, Jang</creatorcontrib><description>In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2202.06451</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aqueous electrolytes ; Bulk density ; Electrokinetics ; Electrolytes ; Fluidics ; Industrial applications ; Mean field theory ; Nanochannels ; Nanofluids ; Polarization ; Size effects ; Solvents ; Streaming potential ; Zeta potential</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2628907266?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Jun-Sik Sin</creatorcontrib><creatorcontrib>Nam-Hyok Kim</creatorcontrib><creatorcontrib>Chol-Ho, Kim</creatorcontrib><creatorcontrib>Yong-Man, Jang</creatorcontrib><title>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</title><title>arXiv.org</title><description>In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.</description><subject>Aqueous electrolytes</subject><subject>Bulk density</subject><subject>Electrokinetics</subject><subject>Electrolytes</subject><subject>Fluidics</subject><subject>Industrial applications</subject><subject>Mean field theory</subject><subject>Nanochannels</subject><subject>Nanofluids</subject><subject>Polarization</subject><subject>Size effects</subject><subject>Solvents</subject><subject>Streaming potential</subject><subject>Zeta potential</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAUREWh0JDmA7oTdG1XvnpYXpbQRyCQTfZBtiWq1L1yJTmUfH0F7WqGgTMzhDw0rBZaSvZk4o-_1AAMaqaEbG7ICjhvKi0A7sgmpTNjDFQLUvIV8Tt002JxsDQ4msJ0sZjpHCYT_dVkH5AaHCkGrBb0LsQvWjI_0OSvBUFqJzvkGD492lziHA2mOcRMfSEpGgzDh0G00z25dWZKdvOva3J8fTlu36v94W23fd5XRoKqBLQgXNsbzUVTLndjJ3QjlWSjBNAt663tOmukHns2to3iAoodwDllZe_4mjz-1c4xfC825dM5LBHL4gkU6I61oBT_BS-yWk4</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Jun-Sik Sin</creator><creator>Nam-Hyok Kim</creator><creator>Chol-Ho, Kim</creator><creator>Yong-Man, Jang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220214</creationdate><title>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</title><author>Jun-Sik Sin ; Nam-Hyok Kim ; Chol-Ho, Kim ; Yong-Man, Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-42724f7ba83418429d94815650d522870bee99ea58db0d7163428dbc2ff6e5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous electrolytes</topic><topic>Bulk density</topic><topic>Electrokinetics</topic><topic>Electrolytes</topic><topic>Fluidics</topic><topic>Industrial applications</topic><topic>Mean field theory</topic><topic>Nanochannels</topic><topic>Nanofluids</topic><topic>Polarization</topic><topic>Size effects</topic><topic>Solvents</topic><topic>Streaming potential</topic><topic>Zeta potential</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun-Sik Sin</creatorcontrib><creatorcontrib>Nam-Hyok Kim</creatorcontrib><creatorcontrib>Chol-Ho, Kim</creatorcontrib><creatorcontrib>Yong-Man, Jang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun-Sik Sin</au><au>Nam-Hyok Kim</au><au>Chol-Ho, Kim</au><au>Yong-Man, Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel</atitle><jtitle>arXiv.org</jtitle><date>2022-02-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the electroosmotic transport in a nanofluidic channel by using a mean-field theory accounting for non-uniform size effect and solvent polarization effect. We witness that in the presence of the given zeta potential, an enhancement of ion size invariably lowers the electroosmotic velocity, thereby increasing the magnitude of electrostatic potential, irrespective of considering solvent polarization. It is also proved that solvent polarization allows both the magnitude of electrostatic potential and the electroosmotic velocities to decrease. In addition, we find that increasing zeta potential augments not only ion size effect but also solvent polarization effect. Furthermore, we demonstrate that decreasing bulk ion number density causes an increase in electroosmotic velocity at the centerline. We compare the properties of aqueous electrolytes with those of the electrolytes where solvent is ethylalcohol. Finally, we study how solvent polarization and ionic size affect streaming potential and electroviscous effect. It is emphasized that the present study can provide a good way to control the nanofluidic transport for a plethora of biological and industrial applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2202.06451</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2628907266
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Aqueous electrolytes
Bulk density
Electrokinetics
Electrolytes
Fluidics
Industrial applications
Mean field theory
Nanochannels
Nanofluids
Polarization
Size effects
Solvents
Streaming potential
Zeta potential
title Influence of solvent polarization and non-uniform ionic size on electrokinetic transport in a nanochannel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20solvent%20polarization%20and%20non-uniform%20ionic%20size%20on%20electrokinetic%20transport%20in%20a%20nanochannel&rft.jtitle=arXiv.org&rft.au=Jun-Sik%20Sin&rft.date=2022-02-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2202.06451&rft_dat=%3Cproquest%3E2628907266%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-42724f7ba83418429d94815650d522870bee99ea58db0d7163428dbc2ff6e5bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628907266&rft_id=info:pmid/&rfr_iscdi=true