Loading…

CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion

Converting industrial exhaust into valuable chemicals is crucial for sustainable economic development. Direct CO2 photoreduction from real flue gas is an ideal clean and promising way, until now, without success. Here, photoreduction of exhaust gas from the power plant by Ni bridged COF (Ni@TPHH‐COF...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-02, Vol.32 (8), p.n/a
Main Authors: Dong, Man, Zhou, Jie, Zhong, Jun, Li, Hai‐Tao, Sun, Chun‐Yi, Han, Yi‐Dong, Kou, Jun‐Ning, Kang, Zhen‐Hui, Wang, Xin‐Long, Su, Zhong‐Min
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced functional materials
container_volume 32
creator Dong, Man
Zhou, Jie
Zhong, Jun
Li, Hai‐Tao
Sun, Chun‐Yi
Han, Yi‐Dong
Kou, Jun‐Ning
Kang, Zhen‐Hui
Wang, Xin‐Long
Su, Zhong‐Min
description Converting industrial exhaust into valuable chemicals is crucial for sustainable economic development. Direct CO2 photoreduction from real flue gas is an ideal clean and promising way, until now, without success. Here, photoreduction of exhaust gas from the power plant by Ni bridged COF (Ni@TPHH‐COF) is shown. Under visible light, syngas is produced with CO output reaching 2.1 mol kg−1 h−1. The ideal conversion of flue gas is up to 672 L kg−1 h−1. Of note, the system exhibits appealing yield and selectivity under 0.5–40% CO2 and AQY achieves 3.96% under 10% CO2, ranking among the highest value of reported photocatalysts. Mechanism studies suggest CO2 plays a dual function as both a component of a catalytic site and a reactant, which can not only selectively enrich CO2 in catalytic sites but improve reaction rate significantly. This CO2‐dominated bifunctional site prolongs electrons lifetime, stabilizes intermediates, and reduces free energy of reduction under diluted CO2. Ni bridged covalent organic framework layers show efficient photoconversion from the actual industrial exhaust to syngas by CO2 aided bifunctional photocatalytic interface. Under 10% CO2, the apparent quantum efficiency of CO achieves 3.96%. Moreover, the conversion rate of the catalyst to the flue gas could reach 672 L kg−1 h−1 under ideal conditions.
doi_str_mv 10.1002/adfm.202110136
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2628926105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628926105</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-2d6ffe19ea1a06610d90be4db80ecfdddd6a4a053ddd37a266a22062c659a3d43</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYhePTfxvDhtl8IecQElwXDwI96aYdvGkmUX267Kf28JhrnMb5I3Ly-PkFsGAwbA71Hb7YADZwyYkGekxySTmQA-Pj8x-7gkVyFsANhoJPIeeS9XnE7brWswGk0fnO2aKrq2wZqWGLHeR1fRFxdNoLb1dGatq5xpIl00ugvRuySc_X5iYlq2zbfxIX1fkwuLdTA3_7tP3uaz1_IpW64eF-Vkme24EDLjWlprWGGQIUjJQBewNrlej8FUVqeRmCMMRSIxQi4lcg6SV3JYoNC56JO7o-_Ot1-dCVFt2s6n8EFxyccFT57DpCqOqh9Xm73aebdFv1cM1KE4dShOnYpTk-n8-XSJP-xDZM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628926105</pqid></control><display><type>article</type><title>CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Dong, Man ; Zhou, Jie ; Zhong, Jun ; Li, Hai‐Tao ; Sun, Chun‐Yi ; Han, Yi‐Dong ; Kou, Jun‐Ning ; Kang, Zhen‐Hui ; Wang, Xin‐Long ; Su, Zhong‐Min</creator><creatorcontrib>Dong, Man ; Zhou, Jie ; Zhong, Jun ; Li, Hai‐Tao ; Sun, Chun‐Yi ; Han, Yi‐Dong ; Kou, Jun‐Ning ; Kang, Zhen‐Hui ; Wang, Xin‐Long ; Su, Zhong‐Min</creatorcontrib><description>Converting industrial exhaust into valuable chemicals is crucial for sustainable economic development. Direct CO2 photoreduction from real flue gas is an ideal clean and promising way, until now, without success. Here, photoreduction of exhaust gas from the power plant by Ni bridged COF (Ni@TPHH‐COF) is shown. Under visible light, syngas is produced with CO output reaching 2.1 mol kg−1 h−1. The ideal conversion of flue gas is up to 672 L kg−1 h−1. Of note, the system exhibits appealing yield and selectivity under 0.5–40% CO2 and AQY achieves 3.96% under 10% CO2, ranking among the highest value of reported photocatalysts. Mechanism studies suggest CO2 plays a dual function as both a component of a catalytic site and a reactant, which can not only selectively enrich CO2 in catalytic sites but improve reaction rate significantly. This CO2‐dominated bifunctional site prolongs electrons lifetime, stabilizes intermediates, and reduces free energy of reduction under diluted CO2. Ni bridged covalent organic framework layers show efficient photoconversion from the actual industrial exhaust to syngas by CO2 aided bifunctional photocatalytic interface. Under 10% CO2, the apparent quantum efficiency of CO achieves 3.96%. Moreover, the conversion rate of the catalyst to the flue gas could reach 672 L kg−1 h−1 under ideal conditions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110136</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Catalytic converters ; CO 2 reduction ; Conversion ; covalent organic frameworks ; Economic development ; Exhaust gases ; Flue gas ; Free energy ; industrial exhaust photo‐conversion ; Materials science ; photocatalysis ; Power plants ; Selectivity ; synergic catalysis ; Synthesis gas</subject><ispartof>Advanced functional materials, 2022-02, Vol.32 (8), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6989-5840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dong, Man</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Li, Hai‐Tao</creatorcontrib><creatorcontrib>Sun, Chun‐Yi</creatorcontrib><creatorcontrib>Han, Yi‐Dong</creatorcontrib><creatorcontrib>Kou, Jun‐Ning</creatorcontrib><creatorcontrib>Kang, Zhen‐Hui</creatorcontrib><creatorcontrib>Wang, Xin‐Long</creatorcontrib><creatorcontrib>Su, Zhong‐Min</creatorcontrib><title>CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion</title><title>Advanced functional materials</title><description>Converting industrial exhaust into valuable chemicals is crucial for sustainable economic development. Direct CO2 photoreduction from real flue gas is an ideal clean and promising way, until now, without success. Here, photoreduction of exhaust gas from the power plant by Ni bridged COF (Ni@TPHH‐COF) is shown. Under visible light, syngas is produced with CO output reaching 2.1 mol kg−1 h−1. The ideal conversion of flue gas is up to 672 L kg−1 h−1. Of note, the system exhibits appealing yield and selectivity under 0.5–40% CO2 and AQY achieves 3.96% under 10% CO2, ranking among the highest value of reported photocatalysts. Mechanism studies suggest CO2 plays a dual function as both a component of a catalytic site and a reactant, which can not only selectively enrich CO2 in catalytic sites but improve reaction rate significantly. This CO2‐dominated bifunctional site prolongs electrons lifetime, stabilizes intermediates, and reduces free energy of reduction under diluted CO2. Ni bridged covalent organic framework layers show efficient photoconversion from the actual industrial exhaust to syngas by CO2 aided bifunctional photocatalytic interface. Under 10% CO2, the apparent quantum efficiency of CO achieves 3.96%. Moreover, the conversion rate of the catalyst to the flue gas could reach 672 L kg−1 h−1 under ideal conditions.</description><subject>Carbon dioxide</subject><subject>Catalytic converters</subject><subject>CO 2 reduction</subject><subject>Conversion</subject><subject>covalent organic frameworks</subject><subject>Economic development</subject><subject>Exhaust gases</subject><subject>Flue gas</subject><subject>Free energy</subject><subject>industrial exhaust photo‐conversion</subject><subject>Materials science</subject><subject>photocatalysis</subject><subject>Power plants</subject><subject>Selectivity</subject><subject>synergic catalysis</subject><subject>Synthesis gas</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PAjEQxRujiYhePTfxvDhtl8IecQElwXDwI96aYdvGkmUX267Kf28JhrnMb5I3Ly-PkFsGAwbA71Hb7YADZwyYkGekxySTmQA-Pj8x-7gkVyFsANhoJPIeeS9XnE7brWswGk0fnO2aKrq2wZqWGLHeR1fRFxdNoLb1dGatq5xpIl00ugvRuySc_X5iYlq2zbfxIX1fkwuLdTA3_7tP3uaz1_IpW64eF-Vkme24EDLjWlprWGGQIUjJQBewNrlej8FUVqeRmCMMRSIxQi4lcg6SV3JYoNC56JO7o-_Ot1-dCVFt2s6n8EFxyccFT57DpCqOqh9Xm73aebdFv1cM1KE4dShOnYpTk-n8-XSJP-xDZM0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Dong, Man</creator><creator>Zhou, Jie</creator><creator>Zhong, Jun</creator><creator>Li, Hai‐Tao</creator><creator>Sun, Chun‐Yi</creator><creator>Han, Yi‐Dong</creator><creator>Kou, Jun‐Ning</creator><creator>Kang, Zhen‐Hui</creator><creator>Wang, Xin‐Long</creator><creator>Su, Zhong‐Min</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6989-5840</orcidid></search><sort><creationdate>20220201</creationdate><title>CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion</title><author>Dong, Man ; Zhou, Jie ; Zhong, Jun ; Li, Hai‐Tao ; Sun, Chun‐Yi ; Han, Yi‐Dong ; Kou, Jun‐Ning ; Kang, Zhen‐Hui ; Wang, Xin‐Long ; Su, Zhong‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-2d6ffe19ea1a06610d90be4db80ecfdddd6a4a053ddd37a266a22062c659a3d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Catalytic converters</topic><topic>CO 2 reduction</topic><topic>Conversion</topic><topic>covalent organic frameworks</topic><topic>Economic development</topic><topic>Exhaust gases</topic><topic>Flue gas</topic><topic>Free energy</topic><topic>industrial exhaust photo‐conversion</topic><topic>Materials science</topic><topic>photocatalysis</topic><topic>Power plants</topic><topic>Selectivity</topic><topic>synergic catalysis</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Man</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Zhong, Jun</creatorcontrib><creatorcontrib>Li, Hai‐Tao</creatorcontrib><creatorcontrib>Sun, Chun‐Yi</creatorcontrib><creatorcontrib>Han, Yi‐Dong</creatorcontrib><creatorcontrib>Kou, Jun‐Ning</creatorcontrib><creatorcontrib>Kang, Zhen‐Hui</creatorcontrib><creatorcontrib>Wang, Xin‐Long</creatorcontrib><creatorcontrib>Su, Zhong‐Min</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Man</au><au>Zhou, Jie</au><au>Zhong, Jun</au><au>Li, Hai‐Tao</au><au>Sun, Chun‐Yi</au><au>Han, Yi‐Dong</au><au>Kou, Jun‐Ning</au><au>Kang, Zhen‐Hui</au><au>Wang, Xin‐Long</au><au>Su, Zhong‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion</atitle><jtitle>Advanced functional materials</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Converting industrial exhaust into valuable chemicals is crucial for sustainable economic development. Direct CO2 photoreduction from real flue gas is an ideal clean and promising way, until now, without success. Here, photoreduction of exhaust gas from the power plant by Ni bridged COF (Ni@TPHH‐COF) is shown. Under visible light, syngas is produced with CO output reaching 2.1 mol kg−1 h−1. The ideal conversion of flue gas is up to 672 L kg−1 h−1. Of note, the system exhibits appealing yield and selectivity under 0.5–40% CO2 and AQY achieves 3.96% under 10% CO2, ranking among the highest value of reported photocatalysts. Mechanism studies suggest CO2 plays a dual function as both a component of a catalytic site and a reactant, which can not only selectively enrich CO2 in catalytic sites but improve reaction rate significantly. This CO2‐dominated bifunctional site prolongs electrons lifetime, stabilizes intermediates, and reduces free energy of reduction under diluted CO2. Ni bridged covalent organic framework layers show efficient photoconversion from the actual industrial exhaust to syngas by CO2 aided bifunctional photocatalytic interface. Under 10% CO2, the apparent quantum efficiency of CO achieves 3.96%. Moreover, the conversion rate of the catalyst to the flue gas could reach 672 L kg−1 h−1 under ideal conditions.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110136</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6989-5840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-02, Vol.32 (8), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2628926105
source Wiley-Blackwell Read & Publish Collection
subjects Carbon dioxide
Catalytic converters
CO 2 reduction
Conversion
covalent organic frameworks
Economic development
Exhaust gases
Flue gas
Free energy
industrial exhaust photo‐conversion
Materials science
photocatalysis
Power plants
Selectivity
synergic catalysis
Synthesis gas
title CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Dominated%20Bifunctional%20Catalytic%20Sites%20for%20Efficient%20Industrial%20Exhaust%20Conversion&rft.jtitle=Advanced%20functional%20materials&rft.au=Dong,%20Man&rft.date=2022-02-01&rft.volume=32&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110136&rft_dat=%3Cproquest_wiley%3E2628926105%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2336-2d6ffe19ea1a06610d90be4db80ecfdddd6a4a053ddd37a266a22062c659a3d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628926105&rft_id=info:pmid/&rfr_iscdi=true