Loading…

3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried

Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically...

Full description

Saved in:
Bibliographic Details
Published in:Geomechanik und Tunnelbau 2022-02, Vol.15 (1), p.48-57
Main Authors: Meneses Rioseco, Ernesto, Dussel, Michael, Moeck, Inga S.
Format: Article
Language:eng ; ger
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73
cites cdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73
container_end_page 57
container_issue 1
container_start_page 48
container_title Geomechanik und Tunnelbau
container_volume 15
creator Meneses Rioseco, Ernesto
Dussel, Michael
Moeck, Inga S.
description Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.
doi_str_mv 10.1002/geot.202100083
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629271266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629271266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</originalsourceid><addsrcrecordid>eNqFkc9O20AQxleoSKA0V84r9ZzUu4537SOENKUCcQlna2zPNoscr5m1U_nGI1TqK_VJ8iSsmwJHTvNHv-8baT7GLkQ0F1Ekv_5E181lJMMQpfEJOxepSmY6TrNPb72SZ2zq_WNAolgstFbn7G98zbst0s4dnn9vh4rGusNyC40toebe7voaOusa7sxI8gK3sLeup3EBvIGuJ6jrgRuCMvRY8RY7cv9cgwOhR9o7S9w2vEJs-UPbIvEfQea9LXkJVLhgg_71xBXsgSw0_M7VgRkXPogPz3_4EsLou74a-BoJO08Wq8_s1EDtcfq_TtjDt9Vm-X12e7--WV7ezkoZy3iGmBWLypRai0SrxIhUiwrBqAzTpJCiMOkiqUympQKlYgysFlEmhM50gYWOJ-zL0bcl99Sj7_LH8IcmnMylkpnUQgbdhM2PVEnOe0KTt2R3QEMuonwMKx_Dyt_CCoLsKPhlaxw-oPP16n7zrn0BElaf_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629271266</pqid></control><display><type>article</type><title>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Meneses Rioseco, Ernesto ; Dussel, Michael ; Moeck, Inga S.</creator><creatorcontrib>Meneses Rioseco, Ernesto ; Dussel, Michael ; Moeck, Inga S.</creatorcontrib><description>Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.</description><identifier>ISSN: 1865-7362</identifier><identifier>EISSN: 1865-7389</identifier><identifier>DOI: 10.1002/geot.202100083</identifier><language>eng ; ger</language><publisher>Berlin: Ernst &amp; Sohn GmbH</publisher><subject>3D reservoir modelling ; Carbonates ; coupled thermoporoelastic effects ; deep Upper Jurassic carbonates ; Felsmechanik ; Flow rates ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid injection ; Fractured reservoirs ; fracture‐controlled petrothermal reservoir ; Geologie ; Geology ; Geophysics ; Geophysik ; Heat transport ; Hydrologie ; Hydrology ; induced thermal stresses ; Injection ; Intake temperature ; Jurassic ; Mechanical properties ; numerical simulation ; Reservoir performance ; Reservoirs ; Rock mechanics ; Simulation ; slip and dilation tendency analysis ; Thermal stress ; Three dimensional models</subject><ispartof>Geomechanik und Tunnelbau, 2022-02, Vol.15 (1), p.48-57</ispartof><rights>2022 Ernst &amp; Sohn GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</citedby><cites>FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Meneses Rioseco, Ernesto</creatorcontrib><creatorcontrib>Dussel, Michael</creatorcontrib><creatorcontrib>Moeck, Inga S.</creatorcontrib><title>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</title><title>Geomechanik und Tunnelbau</title><description>Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.</description><subject>3D reservoir modelling</subject><subject>Carbonates</subject><subject>coupled thermoporoelastic effects</subject><subject>deep Upper Jurassic carbonates</subject><subject>Felsmechanik</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid injection</subject><subject>Fractured reservoirs</subject><subject>fracture‐controlled petrothermal reservoir</subject><subject>Geologie</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Geophysik</subject><subject>Heat transport</subject><subject>Hydrologie</subject><subject>Hydrology</subject><subject>induced thermal stresses</subject><subject>Injection</subject><subject>Intake temperature</subject><subject>Jurassic</subject><subject>Mechanical properties</subject><subject>numerical simulation</subject><subject>Reservoir performance</subject><subject>Reservoirs</subject><subject>Rock mechanics</subject><subject>Simulation</subject><subject>slip and dilation tendency analysis</subject><subject>Thermal stress</subject><subject>Three dimensional models</subject><issn>1865-7362</issn><issn>1865-7389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O20AQxleoSKA0V84r9ZzUu4537SOENKUCcQlna2zPNoscr5m1U_nGI1TqK_VJ8iSsmwJHTvNHv-8baT7GLkQ0F1Ekv_5E181lJMMQpfEJOxepSmY6TrNPb72SZ2zq_WNAolgstFbn7G98zbst0s4dnn9vh4rGusNyC40toebe7voaOusa7sxI8gK3sLeup3EBvIGuJ6jrgRuCMvRY8RY7cv9cgwOhR9o7S9w2vEJs-UPbIvEfQea9LXkJVLhgg_71xBXsgSw0_M7VgRkXPogPz3_4EsLou74a-BoJO08Wq8_s1EDtcfq_TtjDt9Vm-X12e7--WV7ezkoZy3iGmBWLypRai0SrxIhUiwrBqAzTpJCiMOkiqUympQKlYgysFlEmhM50gYWOJ-zL0bcl99Sj7_LH8IcmnMylkpnUQgbdhM2PVEnOe0KTt2R3QEMuonwMKx_Dyt_CCoLsKPhlaxw-oPP16n7zrn0BElaf_w</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Meneses Rioseco, Ernesto</creator><creator>Dussel, Michael</creator><creator>Moeck, Inga S.</creator><general>Ernst &amp; Sohn GmbH</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>202202</creationdate><title>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</title><author>Meneses Rioseco, Ernesto ; Dussel, Michael ; Moeck, Inga S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2022</creationdate><topic>3D reservoir modelling</topic><topic>Carbonates</topic><topic>coupled thermoporoelastic effects</topic><topic>deep Upper Jurassic carbonates</topic><topic>Felsmechanik</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid injection</topic><topic>Fractured reservoirs</topic><topic>fracture‐controlled petrothermal reservoir</topic><topic>Geologie</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Geophysik</topic><topic>Heat transport</topic><topic>Hydrologie</topic><topic>Hydrology</topic><topic>induced thermal stresses</topic><topic>Injection</topic><topic>Intake temperature</topic><topic>Jurassic</topic><topic>Mechanical properties</topic><topic>numerical simulation</topic><topic>Reservoir performance</topic><topic>Reservoirs</topic><topic>Rock mechanics</topic><topic>Simulation</topic><topic>slip and dilation tendency analysis</topic><topic>Thermal stress</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meneses Rioseco, Ernesto</creatorcontrib><creatorcontrib>Dussel, Michael</creatorcontrib><creatorcontrib>Moeck, Inga S.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geomechanik und Tunnelbau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meneses Rioseco, Ernesto</au><au>Dussel, Michael</au><au>Moeck, Inga S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</atitle><jtitle>Geomechanik und Tunnelbau</jtitle><date>2022-02</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>48</spage><epage>57</epage><pages>48-57</pages><issn>1865-7362</issn><eissn>1865-7389</eissn><abstract>Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.</abstract><cop>Berlin</cop><pub>Ernst &amp; Sohn GmbH</pub><doi>10.1002/geot.202100083</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1865-7362
ispartof Geomechanik und Tunnelbau, 2022-02, Vol.15 (1), p.48-57
issn 1865-7362
1865-7389
language eng ; ger
recordid cdi_proquest_journals_2629271266
source Wiley-Blackwell Read & Publish Collection
subjects 3D reservoir modelling
Carbonates
coupled thermoporoelastic effects
deep Upper Jurassic carbonates
Felsmechanik
Flow rates
Flow velocity
Fluid dynamics
Fluid flow
Fluid injection
Fractured reservoirs
fracture‐controlled petrothermal reservoir
Geologie
Geology
Geophysics
Geophysik
Heat transport
Hydrologie
Hydrology
induced thermal stresses
Injection
Intake temperature
Jurassic
Mechanical properties
numerical simulation
Reservoir performance
Reservoirs
Rock mechanics
Simulation
slip and dilation tendency analysis
Thermal stress
Three dimensional models
title 3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20thermo%E2%80%90hydro%E2%80%90mechanical%20simulation%20of%20the%20behaviour%20of%20a%20naturally%20fractured%20petrothermal%20reservoir%20in%20deep%20Upper%20Jurassic%20carbonates%20of%20the%20Bavarian%20Molasse%20Basin%20%E2%80%93%20Case%20study%20Geretsried&rft.jtitle=Geomechanik%20und%20Tunnelbau&rft.au=Meneses%20Rioseco,%20Ernesto&rft.date=2022-02&rft.volume=15&rft.issue=1&rft.spage=48&rft.epage=57&rft.pages=48-57&rft.issn=1865-7362&rft.eissn=1865-7389&rft_id=info:doi/10.1002/geot.202100083&rft_dat=%3Cproquest_cross%3E2629271266%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629271266&rft_id=info:pmid/&rfr_iscdi=true