Loading…
3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried
Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically...
Saved in:
Published in: | Geomechanik und Tunnelbau 2022-02, Vol.15 (1), p.48-57 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | eng ; ger |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73 |
container_end_page | 57 |
container_issue | 1 |
container_start_page | 48 |
container_title | Geomechanik und Tunnelbau |
container_volume | 15 |
creator | Meneses Rioseco, Ernesto Dussel, Michael Moeck, Inga S. |
description | Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation. |
doi_str_mv | 10.1002/geot.202100083 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2629271266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629271266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</originalsourceid><addsrcrecordid>eNqFkc9O20AQxleoSKA0V84r9ZzUu4537SOENKUCcQlna2zPNoscr5m1U_nGI1TqK_VJ8iSsmwJHTvNHv-8baT7GLkQ0F1Ekv_5E181lJMMQpfEJOxepSmY6TrNPb72SZ2zq_WNAolgstFbn7G98zbst0s4dnn9vh4rGusNyC40toebe7voaOusa7sxI8gK3sLeup3EBvIGuJ6jrgRuCMvRY8RY7cv9cgwOhR9o7S9w2vEJs-UPbIvEfQea9LXkJVLhgg_71xBXsgSw0_M7VgRkXPogPz3_4EsLou74a-BoJO08Wq8_s1EDtcfq_TtjDt9Vm-X12e7--WV7ezkoZy3iGmBWLypRai0SrxIhUiwrBqAzTpJCiMOkiqUympQKlYgysFlEmhM50gYWOJ-zL0bcl99Sj7_LH8IcmnMylkpnUQgbdhM2PVEnOe0KTt2R3QEMuonwMKx_Dyt_CCoLsKPhlaxw-oPP16n7zrn0BElaf_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629271266</pqid></control><display><type>article</type><title>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Meneses Rioseco, Ernesto ; Dussel, Michael ; Moeck, Inga S.</creator><creatorcontrib>Meneses Rioseco, Ernesto ; Dussel, Michael ; Moeck, Inga S.</creatorcontrib><description>Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.</description><identifier>ISSN: 1865-7362</identifier><identifier>EISSN: 1865-7389</identifier><identifier>DOI: 10.1002/geot.202100083</identifier><language>eng ; ger</language><publisher>Berlin: Ernst & Sohn GmbH</publisher><subject>3D reservoir modelling ; Carbonates ; coupled thermoporoelastic effects ; deep Upper Jurassic carbonates ; Felsmechanik ; Flow rates ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid injection ; Fractured reservoirs ; fracture‐controlled petrothermal reservoir ; Geologie ; Geology ; Geophysics ; Geophysik ; Heat transport ; Hydrologie ; Hydrology ; induced thermal stresses ; Injection ; Intake temperature ; Jurassic ; Mechanical properties ; numerical simulation ; Reservoir performance ; Reservoirs ; Rock mechanics ; Simulation ; slip and dilation tendency analysis ; Thermal stress ; Three dimensional models</subject><ispartof>Geomechanik und Tunnelbau, 2022-02, Vol.15 (1), p.48-57</ispartof><rights>2022 Ernst & Sohn GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</citedby><cites>FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Meneses Rioseco, Ernesto</creatorcontrib><creatorcontrib>Dussel, Michael</creatorcontrib><creatorcontrib>Moeck, Inga S.</creatorcontrib><title>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</title><title>Geomechanik und Tunnelbau</title><description>Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.</description><subject>3D reservoir modelling</subject><subject>Carbonates</subject><subject>coupled thermoporoelastic effects</subject><subject>deep Upper Jurassic carbonates</subject><subject>Felsmechanik</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid injection</subject><subject>Fractured reservoirs</subject><subject>fracture‐controlled petrothermal reservoir</subject><subject>Geologie</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Geophysik</subject><subject>Heat transport</subject><subject>Hydrologie</subject><subject>Hydrology</subject><subject>induced thermal stresses</subject><subject>Injection</subject><subject>Intake temperature</subject><subject>Jurassic</subject><subject>Mechanical properties</subject><subject>numerical simulation</subject><subject>Reservoir performance</subject><subject>Reservoirs</subject><subject>Rock mechanics</subject><subject>Simulation</subject><subject>slip and dilation tendency analysis</subject><subject>Thermal stress</subject><subject>Three dimensional models</subject><issn>1865-7362</issn><issn>1865-7389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O20AQxleoSKA0V84r9ZzUu4537SOENKUCcQlna2zPNoscr5m1U_nGI1TqK_VJ8iSsmwJHTvNHv-8baT7GLkQ0F1Ekv_5E181lJMMQpfEJOxepSmY6TrNPb72SZ2zq_WNAolgstFbn7G98zbst0s4dnn9vh4rGusNyC40toebe7voaOusa7sxI8gK3sLeup3EBvIGuJ6jrgRuCMvRY8RY7cv9cgwOhR9o7S9w2vEJs-UPbIvEfQea9LXkJVLhgg_71xBXsgSw0_M7VgRkXPogPz3_4EsLou74a-BoJO08Wq8_s1EDtcfq_TtjDt9Vm-X12e7--WV7ezkoZy3iGmBWLypRai0SrxIhUiwrBqAzTpJCiMOkiqUympQKlYgysFlEmhM50gYWOJ-zL0bcl99Sj7_LH8IcmnMylkpnUQgbdhM2PVEnOe0KTt2R3QEMuonwMKx_Dyt_CCoLsKPhlaxw-oPP16n7zrn0BElaf_w</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Meneses Rioseco, Ernesto</creator><creator>Dussel, Michael</creator><creator>Moeck, Inga S.</creator><general>Ernst & Sohn GmbH</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>202202</creationdate><title>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</title><author>Meneses Rioseco, Ernesto ; Dussel, Michael ; Moeck, Inga S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2022</creationdate><topic>3D reservoir modelling</topic><topic>Carbonates</topic><topic>coupled thermoporoelastic effects</topic><topic>deep Upper Jurassic carbonates</topic><topic>Felsmechanik</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid injection</topic><topic>Fractured reservoirs</topic><topic>fracture‐controlled petrothermal reservoir</topic><topic>Geologie</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Geophysik</topic><topic>Heat transport</topic><topic>Hydrologie</topic><topic>Hydrology</topic><topic>induced thermal stresses</topic><topic>Injection</topic><topic>Intake temperature</topic><topic>Jurassic</topic><topic>Mechanical properties</topic><topic>numerical simulation</topic><topic>Reservoir performance</topic><topic>Reservoirs</topic><topic>Rock mechanics</topic><topic>Simulation</topic><topic>slip and dilation tendency analysis</topic><topic>Thermal stress</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meneses Rioseco, Ernesto</creatorcontrib><creatorcontrib>Dussel, Michael</creatorcontrib><creatorcontrib>Moeck, Inga S.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geomechanik und Tunnelbau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meneses Rioseco, Ernesto</au><au>Dussel, Michael</au><au>Moeck, Inga S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried</atitle><jtitle>Geomechanik und Tunnelbau</jtitle><date>2022-02</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>48</spage><epage>57</epage><pages>48-57</pages><issn>1865-7362</issn><eissn>1865-7389</eissn><abstract>Based on multi‐scale and multi‐disciplinary measured data, gathered at the Geretsried geothermal site, a 3D reservoir model of the deep and fracture‐controlled Upper Jurassic carbonates in the North Alpine Foreland Basin is generated in this work. An efficient methodology is developed to numerically simulate the coupled reservoir processes of fluid flow, heat transport and thermoporoelastic stresses resulting from possible geothermal doublet operating schemes with cold fluid injection and production profiles in an enhanced naturally fractured reservoir. A variety of numerical experiments is conducted to study the reactivation potential and dilation tendency of the fracture and fault system. Simulation results show the spatiotemporal evolution of the thermoporoelastic stresses and the zone affected after 50 years of geothermal doublet operation. From these simulations, the thermoelastic response of a geothermal doublet operating with 60 °C fluid injection temperature and 20 l/s flow rate translates into a maximum induced thermal stress of around 49.4 MPa near the injection well. In terms of a long‐term reservoir performance and fault and fracture reactivation potential, the findings reveal a negligible risk to a sustainable geothermal doublet operation.</abstract><cop>Berlin</cop><pub>Ernst & Sohn GmbH</pub><doi>10.1002/geot.202100083</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-7362 |
ispartof | Geomechanik und Tunnelbau, 2022-02, Vol.15 (1), p.48-57 |
issn | 1865-7362 1865-7389 |
language | eng ; ger |
recordid | cdi_proquest_journals_2629271266 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D reservoir modelling Carbonates coupled thermoporoelastic effects deep Upper Jurassic carbonates Felsmechanik Flow rates Flow velocity Fluid dynamics Fluid flow Fluid injection Fractured reservoirs fracture‐controlled petrothermal reservoir Geologie Geology Geophysics Geophysik Heat transport Hydrologie Hydrology induced thermal stresses Injection Intake temperature Jurassic Mechanical properties numerical simulation Reservoir performance Reservoirs Rock mechanics Simulation slip and dilation tendency analysis Thermal stress Three dimensional models |
title | 3D thermo‐hydro‐mechanical simulation of the behaviour of a naturally fractured petrothermal reservoir in deep Upper Jurassic carbonates of the Bavarian Molasse Basin – Case study Geretsried |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20thermo%E2%80%90hydro%E2%80%90mechanical%20simulation%20of%20the%20behaviour%20of%20a%20naturally%20fractured%20petrothermal%20reservoir%20in%20deep%20Upper%20Jurassic%20carbonates%20of%20the%20Bavarian%20Molasse%20Basin%20%E2%80%93%20Case%20study%20Geretsried&rft.jtitle=Geomechanik%20und%20Tunnelbau&rft.au=Meneses%20Rioseco,%20Ernesto&rft.date=2022-02&rft.volume=15&rft.issue=1&rft.spage=48&rft.epage=57&rft.pages=48-57&rft.issn=1865-7362&rft.eissn=1865-7389&rft_id=info:doi/10.1002/geot.202100083&rft_dat=%3Cproquest_cross%3E2629271266%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2323-ee9b4dfc7715765f1871deaf69e85b21bf845df9726a663e4df710911797beb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629271266&rft_id=info:pmid/&rfr_iscdi=true |