Loading…
The Potential of Cleaner Fermentation Processes for Bioplastic Production: A Narrative Review of Polyhydroxyalkanoates (PHA) and Polylactic Acid (PLA)
Synthetic plastics generate major problems in landfills after their consumption for occupying high volumes and difficult the decomposition of other organic materials. In addition, they are also responsible for impacts on the marine ecosystem. Because of this, the need for cleaner products and proces...
Saved in:
Published in: | Journal of polymers and the environment 2022-03, Vol.30 (3), p.810-832 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synthetic plastics generate major problems in landfills after their consumption for occupying high volumes and difficult the decomposition of other organic materials. In addition, they are also responsible for impacts on the marine ecosystem. Because of this, the need for cleaner products and process is increasing. Among a variety of existing bioplastics, those derived from cleaner fermentation processes such as polyhydroxyalkanoates (PHA) and polylactic acid (PLA) are promising sustainable alternatives to replace synthetic plastic. This narrative review provides an overview of the real potential of PHA and PLA for cleaner production. For that purpose, the discussion considers an extensive literature that points out the environmental benefits about bioplastics and also the factors that limit their real sustainability. Through an analysis of future perspectives, a general contribution was offered by means of recommendations for a cleaner production of these bioplastics with the aim of promoting sustainable development. This set of factors can overcome the existing limitations, benefiting the environment, consumers and the market.
Graphic Abstract |
---|---|
ISSN: | 1566-2543 1572-8919 |
DOI: | 10.1007/s10924-021-02241-z |