Loading…

Charge prediction modeling with interpretation enhancement driven by double-layer criminal system

With the rapid development of artificial intelligence and the increasing demand for legal intelligence, using AI methods to predict legal judgments has become a hot spot in recent years. Charge prediction is one of the core tasks of Legal Judgment Prediction (LJP). It aims to predict charge from com...

Full description

Saved in:
Bibliographic Details
Published in:World wide web (Bussum) 2022, Vol.25 (1), p.381-400
Main Authors: Li, Lin, Zhao, Lingyun, Nai, Peiran, Tao, Xiaohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid development of artificial intelligence and the increasing demand for legal intelligence, using AI methods to predict legal judgments has become a hot spot in recent years. Charge prediction is one of the core tasks of Legal Judgment Prediction (LJP). It aims to predict charge from complicated legal facts, so as to help the court make judgments or provide legal professional guidance to non-professionals. In the field of legalAI, interpretability is crucial compared to others. Reasonable interpretability can eliminate hidden dangers such as gender discrimination and provide support for judges’ decisions. However, how to add the legal theory framework to the modeling to improve the interpretability is a challenge, which has few researches at present. To address this problem, we use Double-layer Criminal System as a guide to build Charge Prediction modeling called DCSCP which aims to predict charges in the criminal law of China. In general, our characteristic is to achieve multi-granularity inference of legal charges by obtaining the subjective and objective elements from the fact descriptions of legal cases. Specifically, our approach is performed in two steps: (1) extract the objective elements from the fact description and use them to generate candidate charges to achieve coarse-grained prediction; (2) extract the subjective elements from the fact description, and design the first-order predicate logic inference to realize the fine-grained charge inference in combination with the candidate charges. Experimental results show that our DCSCP can provide interpretable predictions, and it can maintain performance compared to other state-of-the-art charge prediction models.
ISSN:1386-145X
1573-1413
DOI:10.1007/s11280-021-00873-8