Loading…

Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System

Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optim...

Full description

Saved in:
Bibliographic Details
Published in:ChemCatChem 2022-02, Vol.14 (4), p.n/a
Main Authors: Ko, Wonjae, Kim, Ju Hee, Yim, Guk Hee, Lee, Seong Chan, Kim, Sumin, Kwak, Minjoon, Choi, Hyunwoo, Kim, Jongchan, Antink, Wytse Hooch, Kim, Jiheon, Lee, Chan Woo, Bok, Jinsol, Jung, Yoon, Lee, Eunwon, Lee, Kug‐Seung, Cho, Sung‐Pyo, Kim, Do Heui, Kim, Young Gyu, Lee, Byoung‐Hoon, Hyeon, Taeghwan, Yoo, Dongwon
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 4
container_start_page
container_title ChemCatChem
container_volume 14
creator Ko, Wonjae
Kim, Ju Hee
Yim, Guk Hee
Lee, Seong Chan
Kim, Sumin
Kwak, Minjoon
Choi, Hyunwoo
Kim, Jongchan
Antink, Wytse Hooch
Kim, Jiheon
Lee, Chan Woo
Bok, Jinsol
Jung, Yoon
Lee, Eunwon
Lee, Kug‐Seung
Cho, Sung‐Pyo
Kim, Do Heui
Kim, Young Gyu
Lee, Byoung‐Hoon
Hyeon, Taeghwan
Yoo, Dongwon
description Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks. Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.
doi_str_mv 10.1002/cctc.202101760
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2630428518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630428518</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-f3c60381f3438c27fad6d01b1876821b0f43db1ab3d206d39fe2b5073a7d8ad13</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxS0EEqWwMltiTjnbbeKMlcU_qSiIljlybAdcuXFIXKAbbIyIj9hPQtqiTnfv9PS7p4fQOYEBAaCXSgU1oEAJkCSGA9QjPE4ixtP0cL9zOEYnbTsHiFOWjHroS_gqNN45Wz3j-6ULtnYGj1WwbwZPbTAt9hV-0OvvX2Eyikvf4Kl5XZoqWOmw2NyxaHzbrj9_lF_WW5CsNB475V-8w9mH1TLYjmIrnFUGPxqptnq6aoNZnKKjUrrWnP3PPnq6vpqJ22iS3dyJ8SSqKWMQlUzFwDgp2ZBxRZNS6lgDKQhPYk5JAeWQ6YLIgmkKsWZpaWgxgoTJRHOpCeujix23bnyXvw353C-bqnuZ05jBkPIR4Z0r3bnerTOrvG7sQjarnEC-6TjfdJzvO86FmIm9Yn_qOnW6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630428518</pqid></control><display><type>article</type><title>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</title><source>Wiley</source><creator>Ko, Wonjae ; Kim, Ju Hee ; Yim, Guk Hee ; Lee, Seong Chan ; Kim, Sumin ; Kwak, Minjoon ; Choi, Hyunwoo ; Kim, Jongchan ; Antink, Wytse Hooch ; Kim, Jiheon ; Lee, Chan Woo ; Bok, Jinsol ; Jung, Yoon ; Lee, Eunwon ; Lee, Kug‐Seung ; Cho, Sung‐Pyo ; Kim, Do Heui ; Kim, Young Gyu ; Lee, Byoung‐Hoon ; Hyeon, Taeghwan ; Yoo, Dongwon</creator><creatorcontrib>Ko, Wonjae ; Kim, Ju Hee ; Yim, Guk Hee ; Lee, Seong Chan ; Kim, Sumin ; Kwak, Minjoon ; Choi, Hyunwoo ; Kim, Jongchan ; Antink, Wytse Hooch ; Kim, Jiheon ; Lee, Chan Woo ; Bok, Jinsol ; Jung, Yoon ; Lee, Eunwon ; Lee, Kug‐Seung ; Cho, Sung‐Pyo ; Kim, Do Heui ; Kim, Young Gyu ; Lee, Byoung‐Hoon ; Hyeon, Taeghwan ; Yoo, Dongwon</creatorcontrib><description>Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks. Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202101760</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active control ; Catalysts ; Cerium oxides ; Cross coupling ; Heterogeneous catalysis ; Multicomponent reactions ; Nanoclusters ; Optimization ; Oxidation ; Palladium ; Supported catalysts</subject><ispartof>ChemCatChem, 2022-02, Vol.14 (4), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5959-6257 ; 0000-0002-4547-6948 ; 0000-0002-0482-2859 ; 0000-0002-8681-6793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ko, Wonjae</creatorcontrib><creatorcontrib>Kim, Ju Hee</creatorcontrib><creatorcontrib>Yim, Guk Hee</creatorcontrib><creatorcontrib>Lee, Seong Chan</creatorcontrib><creatorcontrib>Kim, Sumin</creatorcontrib><creatorcontrib>Kwak, Minjoon</creatorcontrib><creatorcontrib>Choi, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Jongchan</creatorcontrib><creatorcontrib>Antink, Wytse Hooch</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Lee, Chan Woo</creatorcontrib><creatorcontrib>Bok, Jinsol</creatorcontrib><creatorcontrib>Jung, Yoon</creatorcontrib><creatorcontrib>Lee, Eunwon</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Cho, Sung‐Pyo</creatorcontrib><creatorcontrib>Kim, Do Heui</creatorcontrib><creatorcontrib>Kim, Young Gyu</creatorcontrib><creatorcontrib>Lee, Byoung‐Hoon</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Yoo, Dongwon</creatorcontrib><title>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</title><title>ChemCatChem</title><description>Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks. Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.</description><subject>Active control</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Cross coupling</subject><subject>Heterogeneous catalysis</subject><subject>Multicomponent reactions</subject><subject>Nanoclusters</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Supported catalysts</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD9PwzAQxS0EEqWwMltiTjnbbeKMlcU_qSiIljlybAdcuXFIXKAbbIyIj9hPQtqiTnfv9PS7p4fQOYEBAaCXSgU1oEAJkCSGA9QjPE4ixtP0cL9zOEYnbTsHiFOWjHroS_gqNN45Wz3j-6ULtnYGj1WwbwZPbTAt9hV-0OvvX2Eyikvf4Kl5XZoqWOmw2NyxaHzbrj9_lF_WW5CsNB475V-8w9mH1TLYjmIrnFUGPxqptnq6aoNZnKKjUrrWnP3PPnq6vpqJ22iS3dyJ8SSqKWMQlUzFwDgp2ZBxRZNS6lgDKQhPYk5JAeWQ6YLIgmkKsWZpaWgxgoTJRHOpCeujix23bnyXvw353C-bqnuZ05jBkPIR4Z0r3bnerTOrvG7sQjarnEC-6TjfdJzvO86FmIm9Yn_qOnW6</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Ko, Wonjae</creator><creator>Kim, Ju Hee</creator><creator>Yim, Guk Hee</creator><creator>Lee, Seong Chan</creator><creator>Kim, Sumin</creator><creator>Kwak, Minjoon</creator><creator>Choi, Hyunwoo</creator><creator>Kim, Jongchan</creator><creator>Antink, Wytse Hooch</creator><creator>Kim, Jiheon</creator><creator>Lee, Chan Woo</creator><creator>Bok, Jinsol</creator><creator>Jung, Yoon</creator><creator>Lee, Eunwon</creator><creator>Lee, Kug‐Seung</creator><creator>Cho, Sung‐Pyo</creator><creator>Kim, Do Heui</creator><creator>Kim, Young Gyu</creator><creator>Lee, Byoung‐Hoon</creator><creator>Hyeon, Taeghwan</creator><creator>Yoo, Dongwon</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0002-4547-6948</orcidid><orcidid>https://orcid.org/0000-0002-0482-2859</orcidid><orcidid>https://orcid.org/0000-0002-8681-6793</orcidid></search><sort><creationdate>20220218</creationdate><title>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</title><author>Ko, Wonjae ; Kim, Ju Hee ; Yim, Guk Hee ; Lee, Seong Chan ; Kim, Sumin ; Kwak, Minjoon ; Choi, Hyunwoo ; Kim, Jongchan ; Antink, Wytse Hooch ; Kim, Jiheon ; Lee, Chan Woo ; Bok, Jinsol ; Jung, Yoon ; Lee, Eunwon ; Lee, Kug‐Seung ; Cho, Sung‐Pyo ; Kim, Do Heui ; Kim, Young Gyu ; Lee, Byoung‐Hoon ; Hyeon, Taeghwan ; Yoo, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-f3c60381f3438c27fad6d01b1876821b0f43db1ab3d206d39fe2b5073a7d8ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Cross coupling</topic><topic>Heterogeneous catalysis</topic><topic>Multicomponent reactions</topic><topic>Nanoclusters</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Supported catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Wonjae</creatorcontrib><creatorcontrib>Kim, Ju Hee</creatorcontrib><creatorcontrib>Yim, Guk Hee</creatorcontrib><creatorcontrib>Lee, Seong Chan</creatorcontrib><creatorcontrib>Kim, Sumin</creatorcontrib><creatorcontrib>Kwak, Minjoon</creatorcontrib><creatorcontrib>Choi, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Jongchan</creatorcontrib><creatorcontrib>Antink, Wytse Hooch</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Lee, Chan Woo</creatorcontrib><creatorcontrib>Bok, Jinsol</creatorcontrib><creatorcontrib>Jung, Yoon</creatorcontrib><creatorcontrib>Lee, Eunwon</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Cho, Sung‐Pyo</creatorcontrib><creatorcontrib>Kim, Do Heui</creatorcontrib><creatorcontrib>Kim, Young Gyu</creatorcontrib><creatorcontrib>Lee, Byoung‐Hoon</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Yoo, Dongwon</creatorcontrib><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Wonjae</au><au>Kim, Ju Hee</au><au>Yim, Guk Hee</au><au>Lee, Seong Chan</au><au>Kim, Sumin</au><au>Kwak, Minjoon</au><au>Choi, Hyunwoo</au><au>Kim, Jongchan</au><au>Antink, Wytse Hooch</au><au>Kim, Jiheon</au><au>Lee, Chan Woo</au><au>Bok, Jinsol</au><au>Jung, Yoon</au><au>Lee, Eunwon</au><au>Lee, Kug‐Seung</au><au>Cho, Sung‐Pyo</au><au>Kim, Do Heui</au><au>Kim, Young Gyu</au><au>Lee, Byoung‐Hoon</au><au>Hyeon, Taeghwan</au><au>Yoo, Dongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</atitle><jtitle>ChemCatChem</jtitle><date>2022-02-18</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks. Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202101760</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0002-4547-6948</orcidid><orcidid>https://orcid.org/0000-0002-0482-2859</orcidid><orcidid>https://orcid.org/0000-0002-8681-6793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2022-02, Vol.14 (4), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2630428518
source Wiley
subjects Active control
Catalysts
Cerium oxides
Cross coupling
Heterogeneous catalysis
Multicomponent reactions
Nanoclusters
Optimization
Oxidation
Palladium
Supported catalysts
title Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Multiple%20Active%20Sites%20on%20Pd%E2%88%92CeO2%20for%20Sequential%20C%E2%88%92C%20Cross%E2%80%90coupling%20and%20Alcohol%20Oxidation%20in%20One%20Reaction%20System&rft.jtitle=ChemCatChem&rft.au=Ko,%20Wonjae&rft.date=2022-02-18&rft.volume=14&rft.issue=4&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202101760&rft_dat=%3Cproquest_wiley%3E2630428518%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2330-f3c60381f3438c27fad6d01b1876821b0f43db1ab3d206d39fe2b5073a7d8ad13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630428518&rft_id=info:pmid/&rfr_iscdi=true