Loading…
Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System
Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optim...
Saved in:
Published in: | ChemCatChem 2022-02, Vol.14 (4), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 4 |
container_start_page | |
container_title | ChemCatChem |
container_volume | 14 |
creator | Ko, Wonjae Kim, Ju Hee Yim, Guk Hee Lee, Seong Chan Kim, Sumin Kwak, Minjoon Choi, Hyunwoo Kim, Jongchan Antink, Wytse Hooch Kim, Jiheon Lee, Chan Woo Bok, Jinsol Jung, Yoon Lee, Eunwon Lee, Kug‐Seung Cho, Sung‐Pyo Kim, Do Heui Kim, Young Gyu Lee, Byoung‐Hoon Hyeon, Taeghwan Yoo, Dongwon |
description | Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks.
Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system. |
doi_str_mv | 10.1002/cctc.202101760 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2630428518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2630428518</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-f3c60381f3438c27fad6d01b1876821b0f43db1ab3d206d39fe2b5073a7d8ad13</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxS0EEqWwMltiTjnbbeKMlcU_qSiIljlybAdcuXFIXKAbbIyIj9hPQtqiTnfv9PS7p4fQOYEBAaCXSgU1oEAJkCSGA9QjPE4ixtP0cL9zOEYnbTsHiFOWjHroS_gqNN45Wz3j-6ULtnYGj1WwbwZPbTAt9hV-0OvvX2Eyikvf4Kl5XZoqWOmw2NyxaHzbrj9_lF_WW5CsNB475V-8w9mH1TLYjmIrnFUGPxqptnq6aoNZnKKjUrrWnP3PPnq6vpqJ22iS3dyJ8SSqKWMQlUzFwDgp2ZBxRZNS6lgDKQhPYk5JAeWQ6YLIgmkKsWZpaWgxgoTJRHOpCeujix23bnyXvw353C-bqnuZ05jBkPIR4Z0r3bnerTOrvG7sQjarnEC-6TjfdJzvO86FmIm9Yn_qOnW6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630428518</pqid></control><display><type>article</type><title>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</title><source>Wiley</source><creator>Ko, Wonjae ; Kim, Ju Hee ; Yim, Guk Hee ; Lee, Seong Chan ; Kim, Sumin ; Kwak, Minjoon ; Choi, Hyunwoo ; Kim, Jongchan ; Antink, Wytse Hooch ; Kim, Jiheon ; Lee, Chan Woo ; Bok, Jinsol ; Jung, Yoon ; Lee, Eunwon ; Lee, Kug‐Seung ; Cho, Sung‐Pyo ; Kim, Do Heui ; Kim, Young Gyu ; Lee, Byoung‐Hoon ; Hyeon, Taeghwan ; Yoo, Dongwon</creator><creatorcontrib>Ko, Wonjae ; Kim, Ju Hee ; Yim, Guk Hee ; Lee, Seong Chan ; Kim, Sumin ; Kwak, Minjoon ; Choi, Hyunwoo ; Kim, Jongchan ; Antink, Wytse Hooch ; Kim, Jiheon ; Lee, Chan Woo ; Bok, Jinsol ; Jung, Yoon ; Lee, Eunwon ; Lee, Kug‐Seung ; Cho, Sung‐Pyo ; Kim, Do Heui ; Kim, Young Gyu ; Lee, Byoung‐Hoon ; Hyeon, Taeghwan ; Yoo, Dongwon</creatorcontrib><description>Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks.
Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202101760</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active control ; Catalysts ; Cerium oxides ; Cross coupling ; Heterogeneous catalysis ; Multicomponent reactions ; Nanoclusters ; Optimization ; Oxidation ; Palladium ; Supported catalysts</subject><ispartof>ChemCatChem, 2022-02, Vol.14 (4), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5959-6257 ; 0000-0002-4547-6948 ; 0000-0002-0482-2859 ; 0000-0002-8681-6793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ko, Wonjae</creatorcontrib><creatorcontrib>Kim, Ju Hee</creatorcontrib><creatorcontrib>Yim, Guk Hee</creatorcontrib><creatorcontrib>Lee, Seong Chan</creatorcontrib><creatorcontrib>Kim, Sumin</creatorcontrib><creatorcontrib>Kwak, Minjoon</creatorcontrib><creatorcontrib>Choi, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Jongchan</creatorcontrib><creatorcontrib>Antink, Wytse Hooch</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Lee, Chan Woo</creatorcontrib><creatorcontrib>Bok, Jinsol</creatorcontrib><creatorcontrib>Jung, Yoon</creatorcontrib><creatorcontrib>Lee, Eunwon</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Cho, Sung‐Pyo</creatorcontrib><creatorcontrib>Kim, Do Heui</creatorcontrib><creatorcontrib>Kim, Young Gyu</creatorcontrib><creatorcontrib>Lee, Byoung‐Hoon</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Yoo, Dongwon</creatorcontrib><title>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</title><title>ChemCatChem</title><description>Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks.
Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.</description><subject>Active control</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Cross coupling</subject><subject>Heterogeneous catalysis</subject><subject>Multicomponent reactions</subject><subject>Nanoclusters</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Supported catalysts</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD9PwzAQxS0EEqWwMltiTjnbbeKMlcU_qSiIljlybAdcuXFIXKAbbIyIj9hPQtqiTnfv9PS7p4fQOYEBAaCXSgU1oEAJkCSGA9QjPE4ixtP0cL9zOEYnbTsHiFOWjHroS_gqNN45Wz3j-6ULtnYGj1WwbwZPbTAt9hV-0OvvX2Eyikvf4Kl5XZoqWOmw2NyxaHzbrj9_lF_WW5CsNB475V-8w9mH1TLYjmIrnFUGPxqptnq6aoNZnKKjUrrWnP3PPnq6vpqJ22iS3dyJ8SSqKWMQlUzFwDgp2ZBxRZNS6lgDKQhPYk5JAeWQ6YLIgmkKsWZpaWgxgoTJRHOpCeujix23bnyXvw353C-bqnuZ05jBkPIR4Z0r3bnerTOrvG7sQjarnEC-6TjfdJzvO86FmIm9Yn_qOnW6</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Ko, Wonjae</creator><creator>Kim, Ju Hee</creator><creator>Yim, Guk Hee</creator><creator>Lee, Seong Chan</creator><creator>Kim, Sumin</creator><creator>Kwak, Minjoon</creator><creator>Choi, Hyunwoo</creator><creator>Kim, Jongchan</creator><creator>Antink, Wytse Hooch</creator><creator>Kim, Jiheon</creator><creator>Lee, Chan Woo</creator><creator>Bok, Jinsol</creator><creator>Jung, Yoon</creator><creator>Lee, Eunwon</creator><creator>Lee, Kug‐Seung</creator><creator>Cho, Sung‐Pyo</creator><creator>Kim, Do Heui</creator><creator>Kim, Young Gyu</creator><creator>Lee, Byoung‐Hoon</creator><creator>Hyeon, Taeghwan</creator><creator>Yoo, Dongwon</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0002-4547-6948</orcidid><orcidid>https://orcid.org/0000-0002-0482-2859</orcidid><orcidid>https://orcid.org/0000-0002-8681-6793</orcidid></search><sort><creationdate>20220218</creationdate><title>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</title><author>Ko, Wonjae ; Kim, Ju Hee ; Yim, Guk Hee ; Lee, Seong Chan ; Kim, Sumin ; Kwak, Minjoon ; Choi, Hyunwoo ; Kim, Jongchan ; Antink, Wytse Hooch ; Kim, Jiheon ; Lee, Chan Woo ; Bok, Jinsol ; Jung, Yoon ; Lee, Eunwon ; Lee, Kug‐Seung ; Cho, Sung‐Pyo ; Kim, Do Heui ; Kim, Young Gyu ; Lee, Byoung‐Hoon ; Hyeon, Taeghwan ; Yoo, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-f3c60381f3438c27fad6d01b1876821b0f43db1ab3d206d39fe2b5073a7d8ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Cross coupling</topic><topic>Heterogeneous catalysis</topic><topic>Multicomponent reactions</topic><topic>Nanoclusters</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Supported catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Wonjae</creatorcontrib><creatorcontrib>Kim, Ju Hee</creatorcontrib><creatorcontrib>Yim, Guk Hee</creatorcontrib><creatorcontrib>Lee, Seong Chan</creatorcontrib><creatorcontrib>Kim, Sumin</creatorcontrib><creatorcontrib>Kwak, Minjoon</creatorcontrib><creatorcontrib>Choi, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Jongchan</creatorcontrib><creatorcontrib>Antink, Wytse Hooch</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Lee, Chan Woo</creatorcontrib><creatorcontrib>Bok, Jinsol</creatorcontrib><creatorcontrib>Jung, Yoon</creatorcontrib><creatorcontrib>Lee, Eunwon</creatorcontrib><creatorcontrib>Lee, Kug‐Seung</creatorcontrib><creatorcontrib>Cho, Sung‐Pyo</creatorcontrib><creatorcontrib>Kim, Do Heui</creatorcontrib><creatorcontrib>Kim, Young Gyu</creatorcontrib><creatorcontrib>Lee, Byoung‐Hoon</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Yoo, Dongwon</creatorcontrib><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Wonjae</au><au>Kim, Ju Hee</au><au>Yim, Guk Hee</au><au>Lee, Seong Chan</au><au>Kim, Sumin</au><au>Kwak, Minjoon</au><au>Choi, Hyunwoo</au><au>Kim, Jongchan</au><au>Antink, Wytse Hooch</au><au>Kim, Jiheon</au><au>Lee, Chan Woo</au><au>Bok, Jinsol</au><au>Jung, Yoon</au><au>Lee, Eunwon</au><au>Lee, Kug‐Seung</au><au>Cho, Sung‐Pyo</au><au>Kim, Do Heui</au><au>Kim, Young Gyu</au><au>Lee, Byoung‐Hoon</au><au>Hyeon, Taeghwan</au><au>Yoo, Dongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System</atitle><jtitle>ChemCatChem</jtitle><date>2022-02-18</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Ceria (CeO2)‐supported metal catalysts have been widely utilized for various single‐step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd−CeO2 catalysts and optimize them for a multistep reaction of C−C cross‐coupling and alcohol oxidation. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are active sites on Pd−CeO2 for C−C cross‐coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd−CeO2 during reductive heat‐treatments. Accordingly, we found that optimally reduced Pd−CeO2 catalysts containing ∼1.5 nm‐sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one‐pot sequential synthetic protocols for pharmaceutical building blocks.
Multistep organic reaction of C−C cross‐coupling and alcohol oxidation is achieved on the heterogeneous surface of CeO2‐supported Pd catalyst. Atomic‐level imaging and spectroscopic studies reveal that metallic Pd0 and Pd−CeO2 interface are the active sites for C−C cross‐coupling and alcohol oxidation, respectively. Furthermore, these active sites on Pd−CeO2 were effectively controlled by reductive heat‐treatment, which leads to the optimal structure of Pd−CeO2 for the multistep reaction in one reaction system.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202101760</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0002-4547-6948</orcidid><orcidid>https://orcid.org/0000-0002-0482-2859</orcidid><orcidid>https://orcid.org/0000-0002-8681-6793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2022-02, Vol.14 (4), p.n/a |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2630428518 |
source | Wiley |
subjects | Active control Catalysts Cerium oxides Cross coupling Heterogeneous catalysis Multicomponent reactions Nanoclusters Optimization Oxidation Palladium Supported catalysts |
title | Controlling Multiple Active Sites on Pd−CeO2 for Sequential C−C Cross‐coupling and Alcohol Oxidation in One Reaction System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Multiple%20Active%20Sites%20on%20Pd%E2%88%92CeO2%20for%20Sequential%20C%E2%88%92C%20Cross%E2%80%90coupling%20and%20Alcohol%20Oxidation%20in%20One%20Reaction%20System&rft.jtitle=ChemCatChem&rft.au=Ko,%20Wonjae&rft.date=2022-02-18&rft.volume=14&rft.issue=4&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202101760&rft_dat=%3Cproquest_wiley%3E2630428518%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2330-f3c60381f3438c27fad6d01b1876821b0f43db1ab3d206d39fe2b5073a7d8ad13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630428518&rft_id=info:pmid/&rfr_iscdi=true |