Loading…

Robust multi-objective visual bayesian personalized ranking for multimedia recommendation

Machine learning classifiers are susceptible to adversarial perturbations, and their existence raises security concerns with a focus on recommendation systems. While there is a substantial effort to investigate attacks and defensive techniques in recommendation systems, Basic Iterative perturbation...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-03, Vol.52 (4), p.3499-3510
Main Authors: Paul, Agyemang, Wu, Zhefu, Liu, Kai, Gong, Shufeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023
cites cdi_FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023
container_end_page 3510
container_issue 4
container_start_page 3499
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 52
creator Paul, Agyemang
Wu, Zhefu
Liu, Kai
Gong, Shufeng
description Machine learning classifiers are susceptible to adversarial perturbations, and their existence raises security concerns with a focus on recommendation systems. While there is a substantial effort to investigate attacks and defensive techniques in recommendation systems, Basic Iterative perturbation strategies (BIM) have been under-researched in multimedia recommendation. In this work, we adapt the iterative approach for multimedia recommendation. We proposed a novel Dynamic Collaborative Filtering with Aesthetic (DCFA) approach which leverages aesthetic features of clothing images into a multi-objective pairwise ranking to capture consumer aesthetic taste at a specific time through adversarial training (ADCFA). The DCFA method extends visual recommendation to make three key contributions: (1) incorporate aesthetic features into multimedia recommender system to model consumers’ preferences in the aesthetic aspect. (2) Design a multi-objective personalized ranking for the visual recommendation. (3) Use the aesthetic features to optimize the learning strategy to capture the temporal dynamics of image aesthetic preferences. To reduce the impact of perturbation, we train a DCFA objective function using minimax adversarial training. Extensive experiments on three datasets demonstrate the effectiveness of our method.
doi_str_mv 10.1007/s10489-021-02355-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631474032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631474032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2TTNUYpfUBBEQU8hX1tSdzc12a3UX-_WFbx5GIaB9xlmHoTOCVwSAHGVCZRziYGSoRjn-PMATQgXDItSikM0AUlLPJvJ12N0kvMaABgDMkFvT9H0uSuavu4CjmbtbRe2vtiG3Ou6MHrnc9BtsfEpx1bX4cu7Iun2PbSrooppBBvvgi6St7FpfOt0F2J7io4qXWd_9tun6OX25nlxj5ePdw-L6yW2jMgOG2Moc85QClRKLQR3hjgCzlKYM058ZR0X1IKQxsJ-sIQyUlHgvuLDs1N0Me7dpPjR-9ypdezTcGpWdMZIKUpg-xQdUzbFnJOv1CaFRqedIqD2CtWoUA0K1Y9C9TlAbITyEG5XPv2t_of6Bk3gdsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631474032</pqid></control><display><type>article</type><title>Robust multi-objective visual bayesian personalized ranking for multimedia recommendation</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Paul, Agyemang ; Wu, Zhefu ; Liu, Kai ; Gong, Shufeng</creator><creatorcontrib>Paul, Agyemang ; Wu, Zhefu ; Liu, Kai ; Gong, Shufeng</creatorcontrib><description>Machine learning classifiers are susceptible to adversarial perturbations, and their existence raises security concerns with a focus on recommendation systems. While there is a substantial effort to investigate attacks and defensive techniques in recommendation systems, Basic Iterative perturbation strategies (BIM) have been under-researched in multimedia recommendation. In this work, we adapt the iterative approach for multimedia recommendation. We proposed a novel Dynamic Collaborative Filtering with Aesthetic (DCFA) approach which leverages aesthetic features of clothing images into a multi-objective pairwise ranking to capture consumer aesthetic taste at a specific time through adversarial training (ADCFA). The DCFA method extends visual recommendation to make three key contributions: (1) incorporate aesthetic features into multimedia recommender system to model consumers’ preferences in the aesthetic aspect. (2) Design a multi-objective personalized ranking for the visual recommendation. (3) Use the aesthetic features to optimize the learning strategy to capture the temporal dynamics of image aesthetic preferences. To reduce the impact of perturbation, we train a DCFA objective function using minimax adversarial training. Extensive experiments on three datasets demonstrate the effectiveness of our method.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-02355-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aesthetics ; Artificial Intelligence ; Computer Science ; Customization ; Iterative methods ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Minimax technique ; Multimedia ; Multiple objective analysis ; Perturbation ; Processes ; Ranking ; Recommender systems ; Training</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-03, Vol.52 (4), p.3499-3510</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023</citedby><cites>FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2631474032/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2631474032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Paul, Agyemang</creatorcontrib><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Gong, Shufeng</creatorcontrib><title>Robust multi-objective visual bayesian personalized ranking for multimedia recommendation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Machine learning classifiers are susceptible to adversarial perturbations, and their existence raises security concerns with a focus on recommendation systems. While there is a substantial effort to investigate attacks and defensive techniques in recommendation systems, Basic Iterative perturbation strategies (BIM) have been under-researched in multimedia recommendation. In this work, we adapt the iterative approach for multimedia recommendation. We proposed a novel Dynamic Collaborative Filtering with Aesthetic (DCFA) approach which leverages aesthetic features of clothing images into a multi-objective pairwise ranking to capture consumer aesthetic taste at a specific time through adversarial training (ADCFA). The DCFA method extends visual recommendation to make three key contributions: (1) incorporate aesthetic features into multimedia recommender system to model consumers’ preferences in the aesthetic aspect. (2) Design a multi-objective personalized ranking for the visual recommendation. (3) Use the aesthetic features to optimize the learning strategy to capture the temporal dynamics of image aesthetic preferences. To reduce the impact of perturbation, we train a DCFA objective function using minimax adversarial training. Extensive experiments on three datasets demonstrate the effectiveness of our method.</description><subject>Aesthetics</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Customization</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Minimax technique</subject><subject>Multimedia</subject><subject>Multiple objective analysis</subject><subject>Perturbation</subject><subject>Processes</subject><subject>Ranking</subject><subject>Recommender systems</subject><subject>Training</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2TTNUYpfUBBEQU8hX1tSdzc12a3UX-_WFbx5GIaB9xlmHoTOCVwSAHGVCZRziYGSoRjn-PMATQgXDItSikM0AUlLPJvJ12N0kvMaABgDMkFvT9H0uSuavu4CjmbtbRe2vtiG3Ou6MHrnc9BtsfEpx1bX4cu7Iun2PbSrooppBBvvgi6St7FpfOt0F2J7io4qXWd_9tun6OX25nlxj5ePdw-L6yW2jMgOG2Moc85QClRKLQR3hjgCzlKYM058ZR0X1IKQxsJ-sIQyUlHgvuLDs1N0Me7dpPjR-9ypdezTcGpWdMZIKUpg-xQdUzbFnJOv1CaFRqedIqD2CtWoUA0K1Y9C9TlAbITyEG5XPv2t_of6Bk3gdsg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Paul, Agyemang</creator><creator>Wu, Zhefu</creator><creator>Liu, Kai</creator><creator>Gong, Shufeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>Robust multi-objective visual bayesian personalized ranking for multimedia recommendation</title><author>Paul, Agyemang ; Wu, Zhefu ; Liu, Kai ; Gong, Shufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aesthetics</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Customization</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Minimax technique</topic><topic>Multimedia</topic><topic>Multiple objective analysis</topic><topic>Perturbation</topic><topic>Processes</topic><topic>Ranking</topic><topic>Recommender systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Agyemang</creatorcontrib><creatorcontrib>Wu, Zhefu</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Gong, Shufeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Agyemang</au><au>Wu, Zhefu</au><au>Liu, Kai</au><au>Gong, Shufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust multi-objective visual bayesian personalized ranking for multimedia recommendation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>3499</spage><epage>3510</epage><pages>3499-3510</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Machine learning classifiers are susceptible to adversarial perturbations, and their existence raises security concerns with a focus on recommendation systems. While there is a substantial effort to investigate attacks and defensive techniques in recommendation systems, Basic Iterative perturbation strategies (BIM) have been under-researched in multimedia recommendation. In this work, we adapt the iterative approach for multimedia recommendation. We proposed a novel Dynamic Collaborative Filtering with Aesthetic (DCFA) approach which leverages aesthetic features of clothing images into a multi-objective pairwise ranking to capture consumer aesthetic taste at a specific time through adversarial training (ADCFA). The DCFA method extends visual recommendation to make three key contributions: (1) incorporate aesthetic features into multimedia recommender system to model consumers’ preferences in the aesthetic aspect. (2) Design a multi-objective personalized ranking for the visual recommendation. (3) Use the aesthetic features to optimize the learning strategy to capture the temporal dynamics of image aesthetic preferences. To reduce the impact of perturbation, we train a DCFA objective function using minimax adversarial training. Extensive experiments on three datasets demonstrate the effectiveness of our method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-02355-w</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2022-03, Vol.52 (4), p.3499-3510
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2631474032
source ABI/INFORM global; Springer Nature
subjects Aesthetics
Artificial Intelligence
Computer Science
Customization
Iterative methods
Machine learning
Machines
Manufacturing
Mechanical Engineering
Minimax technique
Multimedia
Multiple objective analysis
Perturbation
Processes
Ranking
Recommender systems
Training
title Robust multi-objective visual bayesian personalized ranking for multimedia recommendation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20multi-objective%20visual%20bayesian%20personalized%20ranking%20for%20multimedia%20recommendation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Paul,%20Agyemang&rft.date=2022-03-01&rft.volume=52&rft.issue=4&rft.spage=3499&rft.epage=3510&rft.pages=3499-3510&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-02355-w&rft_dat=%3Cproquest_cross%3E2631474032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bbb23ddb220299a775db1d10dc208351efcd572c079bc0fcd5c1231f205ef5023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631474032&rft_id=info:pmid/&rfr_iscdi=true