Loading…

Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes

Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (P...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-02, Vol.32 (9), p.n/a
Main Authors: Zhong, Yuan, Huang, Peng, Yan, Wen, Su, Zhong, Sun, Chuang, Xing, Yimin, Lai, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3
cites cdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 32
creator Zhong, Yuan
Huang, Peng
Yan, Wen
Su, Zhong
Sun, Chuang
Xing, Yimin
Lai, Chao
description Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes. A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.
doi_str_mv 10.1002/adfm.202110347
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631847611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631847611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhyMEEqWwMltibrHjxEnGqrRQqQXEH4ktcpxLcXHtYjuUbogn4Bl5EhIVlZHl7obvuzv9guCU4D7BODznZbXshzgkBNMo2Qs6hBHWozhM93czeToMjpxbYEyShEad4HNi9PfH19DoshZevgG6NWrjpefaOKnMO9eArsGvjX1xaKR5oQBxdGeK2nl0b5QsG32kQHjbioAm2oOtuABUGYumRs_b_RuhpJ6jqfTPsl6iGXiu0ECbEtxxcFBx5eDkt3eDx_HoYXjVm95cToaDaU_Q5tkew2VSsiwUpKmUhQUGUnEKSSog5XEJBcQJ4CxiERchoynBUUwrlpGIxRQ47QZn270ra15rcD5fmNrq5mTe4CSNEkZIQ_W3lLDGOQtVvrJyye0mJzhvc87bnPNdzo2QbYW1VLD5h84HF-PZn_sDxT2GKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631847611</pqid></control><display><type>article</type><title>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhong, Yuan ; Huang, Peng ; Yan, Wen ; Su, Zhong ; Sun, Chuang ; Xing, Yimin ; Lai, Chao</creator><creatorcontrib>Zhong, Yuan ; Huang, Peng ; Yan, Wen ; Su, Zhong ; Sun, Chuang ; Xing, Yimin ; Lai, Chao</creatorcontrib><description>Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes. A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110347</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Additives ; Anodes ; Decay rate ; dendrites ; Diffusion barriers ; electrolyte additives ; Electrolytes ; Flux density ; Interfacial properties ; Ion diffusion ; Lithium ; lithium metal anodes ; Materials science ; Robustness ; solid‐electrolyte interphase ; Tetraethyl orthosilicate ; Titanium</subject><ispartof>Advanced functional materials, 2022-02, Vol.32 (9), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</citedby><cites>FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</cites><orcidid>0000-0002-6021-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhong, Yuan</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Yan, Wen</creatorcontrib><creatorcontrib>Su, Zhong</creatorcontrib><creatorcontrib>Sun, Chuang</creatorcontrib><creatorcontrib>Xing, Yimin</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><title>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</title><title>Advanced functional materials</title><description>Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes. A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.</description><subject>Additives</subject><subject>Anodes</subject><subject>Decay rate</subject><subject>dendrites</subject><subject>Diffusion barriers</subject><subject>electrolyte additives</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Interfacial properties</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>lithium metal anodes</subject><subject>Materials science</subject><subject>Robustness</subject><subject>solid‐electrolyte interphase</subject><subject>Tetraethyl orthosilicate</subject><subject>Titanium</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhyMEEqWwMltibrHjxEnGqrRQqQXEH4ktcpxLcXHtYjuUbogn4Bl5EhIVlZHl7obvuzv9guCU4D7BODznZbXshzgkBNMo2Qs6hBHWozhM93czeToMjpxbYEyShEad4HNi9PfH19DoshZevgG6NWrjpefaOKnMO9eArsGvjX1xaKR5oQBxdGeK2nl0b5QsG32kQHjbioAm2oOtuABUGYumRs_b_RuhpJ6jqfTPsl6iGXiu0ECbEtxxcFBx5eDkt3eDx_HoYXjVm95cToaDaU_Q5tkew2VSsiwUpKmUhQUGUnEKSSog5XEJBcQJ4CxiERchoynBUUwrlpGIxRQ47QZn270ra15rcD5fmNrq5mTe4CSNEkZIQ_W3lLDGOQtVvrJyye0mJzhvc87bnPNdzo2QbYW1VLD5h84HF-PZn_sDxT2GKw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhong, Yuan</creator><creator>Huang, Peng</creator><creator>Yan, Wen</creator><creator>Su, Zhong</creator><creator>Sun, Chuang</creator><creator>Xing, Yimin</creator><creator>Lai, Chao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6021-6343</orcidid></search><sort><creationdate>20220201</creationdate><title>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</title><author>Zhong, Yuan ; Huang, Peng ; Yan, Wen ; Su, Zhong ; Sun, Chuang ; Xing, Yimin ; Lai, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Anodes</topic><topic>Decay rate</topic><topic>dendrites</topic><topic>Diffusion barriers</topic><topic>electrolyte additives</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Interfacial properties</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>lithium metal anodes</topic><topic>Materials science</topic><topic>Robustness</topic><topic>solid‐electrolyte interphase</topic><topic>Tetraethyl orthosilicate</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yuan</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Yan, Wen</creatorcontrib><creatorcontrib>Su, Zhong</creatorcontrib><creatorcontrib>Sun, Chuang</creatorcontrib><creatorcontrib>Xing, Yimin</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yuan</au><au>Huang, Peng</au><au>Yan, Wen</au><au>Su, Zhong</au><au>Sun, Chuang</au><au>Xing, Yimin</au><au>Lai, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</atitle><jtitle>Advanced functional materials</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes. A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110347</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6021-6343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-02, Vol.32 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2631847611
source Wiley-Blackwell Read & Publish Collection
subjects Additives
Anodes
Decay rate
dendrites
Diffusion barriers
electrolyte additives
Electrolytes
Flux density
Interfacial properties
Ion diffusion
Lithium
lithium metal anodes
Materials science
Robustness
solid‐electrolyte interphase
Tetraethyl orthosilicate
Titanium
title Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%E2%80%90Conductive%20Polytitanosiloxane%20Networks%20Enable%20a%20Robust%20Solid%E2%80%90Electrolyte%20Interface%20for%20Long%E2%80%90Cycling%20Lithium%20Metal%20Anodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhong,%20Yuan&rft.date=2022-02-01&rft.volume=32&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110347&rft_dat=%3Cproquest_cross%3E2631847611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631847611&rft_id=info:pmid/&rfr_iscdi=true