Loading…
Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes
Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (P...
Saved in:
Published in: | Advanced functional materials 2022-02, Vol.32 (9), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Zhong, Yuan Huang, Peng Yan, Wen Su, Zhong Sun, Chuang Xing, Yimin Lai, Chao |
description | Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes.
A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability. |
doi_str_mv | 10.1002/adfm.202110347 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2631847611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631847611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhyMEEqWwMltibrHjxEnGqrRQqQXEH4ktcpxLcXHtYjuUbogn4Bl5EhIVlZHl7obvuzv9guCU4D7BODznZbXshzgkBNMo2Qs6hBHWozhM93czeToMjpxbYEyShEad4HNi9PfH19DoshZevgG6NWrjpefaOKnMO9eArsGvjX1xaKR5oQBxdGeK2nl0b5QsG32kQHjbioAm2oOtuABUGYumRs_b_RuhpJ6jqfTPsl6iGXiu0ECbEtxxcFBx5eDkt3eDx_HoYXjVm95cToaDaU_Q5tkew2VSsiwUpKmUhQUGUnEKSSog5XEJBcQJ4CxiERchoynBUUwrlpGIxRQ47QZn270ra15rcD5fmNrq5mTe4CSNEkZIQ_W3lLDGOQtVvrJyye0mJzhvc87bnPNdzo2QbYW1VLD5h84HF-PZn_sDxT2GKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631847611</pqid></control><display><type>article</type><title>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhong, Yuan ; Huang, Peng ; Yan, Wen ; Su, Zhong ; Sun, Chuang ; Xing, Yimin ; Lai, Chao</creator><creatorcontrib>Zhong, Yuan ; Huang, Peng ; Yan, Wen ; Su, Zhong ; Sun, Chuang ; Xing, Yimin ; Lai, Chao</creatorcontrib><description>Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes.
A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110347</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Additives ; Anodes ; Decay rate ; dendrites ; Diffusion barriers ; electrolyte additives ; Electrolytes ; Flux density ; Interfacial properties ; Ion diffusion ; Lithium ; lithium metal anodes ; Materials science ; Robustness ; solid‐electrolyte interphase ; Tetraethyl orthosilicate ; Titanium</subject><ispartof>Advanced functional materials, 2022-02, Vol.32 (9), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</citedby><cites>FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</cites><orcidid>0000-0002-6021-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhong, Yuan</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Yan, Wen</creatorcontrib><creatorcontrib>Su, Zhong</creatorcontrib><creatorcontrib>Sun, Chuang</creatorcontrib><creatorcontrib>Xing, Yimin</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><title>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</title><title>Advanced functional materials</title><description>Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes.
A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.</description><subject>Additives</subject><subject>Anodes</subject><subject>Decay rate</subject><subject>dendrites</subject><subject>Diffusion barriers</subject><subject>electrolyte additives</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Interfacial properties</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>lithium metal anodes</subject><subject>Materials science</subject><subject>Robustness</subject><subject>solid‐electrolyte interphase</subject><subject>Tetraethyl orthosilicate</subject><subject>Titanium</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhyMEEqWwMltibrHjxEnGqrRQqQXEH4ktcpxLcXHtYjuUbogn4Bl5EhIVlZHl7obvuzv9guCU4D7BODznZbXshzgkBNMo2Qs6hBHWozhM93czeToMjpxbYEyShEad4HNi9PfH19DoshZevgG6NWrjpefaOKnMO9eArsGvjX1xaKR5oQBxdGeK2nl0b5QsG32kQHjbioAm2oOtuABUGYumRs_b_RuhpJ6jqfTPsl6iGXiu0ECbEtxxcFBx5eDkt3eDx_HoYXjVm95cToaDaU_Q5tkew2VSsiwUpKmUhQUGUnEKSSog5XEJBcQJ4CxiERchoynBUUwrlpGIxRQ47QZn270ra15rcD5fmNrq5mTe4CSNEkZIQ_W3lLDGOQtVvrJyye0mJzhvc87bnPNdzo2QbYW1VLD5h84HF-PZn_sDxT2GKw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhong, Yuan</creator><creator>Huang, Peng</creator><creator>Yan, Wen</creator><creator>Su, Zhong</creator><creator>Sun, Chuang</creator><creator>Xing, Yimin</creator><creator>Lai, Chao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6021-6343</orcidid></search><sort><creationdate>20220201</creationdate><title>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</title><author>Zhong, Yuan ; Huang, Peng ; Yan, Wen ; Su, Zhong ; Sun, Chuang ; Xing, Yimin ; Lai, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Anodes</topic><topic>Decay rate</topic><topic>dendrites</topic><topic>Diffusion barriers</topic><topic>electrolyte additives</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Interfacial properties</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>lithium metal anodes</topic><topic>Materials science</topic><topic>Robustness</topic><topic>solid‐electrolyte interphase</topic><topic>Tetraethyl orthosilicate</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yuan</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Yan, Wen</creatorcontrib><creatorcontrib>Su, Zhong</creatorcontrib><creatorcontrib>Sun, Chuang</creatorcontrib><creatorcontrib>Xing, Yimin</creatorcontrib><creatorcontrib>Lai, Chao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yuan</au><au>Huang, Peng</au><au>Yan, Wen</au><au>Su, Zhong</au><au>Sun, Chuang</au><au>Xing, Yimin</au><au>Lai, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes</atitle><jtitle>Advanced functional materials</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Despite a high‐energy density and low reduction potential, the use of Li metal batteries is hampered by their insufficient electrochemical sustainability, which mainly stems from the lack of a reliable solid‐electrolyte interphase (SEI). In this study, a robust SEI connected by polytitanosiloxane (PTS) is constructed via the in situ condensation reaction between tetraethyl orthosilicate/tetraethyl orthotitanate (TEOS/TEOT) electrolyte additives and the Li anode. In PTS, the Si‒O‒Si bonds, which have a low ion diffusion barrier, can provide an Li+ transport pathway to ensure regular Li deposition. Moreover, the 3D crosslinked PTS skeleton with strong Si‒O‒Ti linkages relieves the strain of volume variations and maintains the integrity of the SEI under Li stripping/plating cycles. The resulting Li|LiFePO4 cell with TEOS/TEOT electrolyte additives exhibits ultra‐stable cycling performance over 3000 cycles with an extremely low capacity decay rate of 0.008% per cycle. This study of the TEOS/TEOT as synergetic electrolyte additives offers a new method for regulating the interfacial properties of Li anodes.
A robust solid‐electrolyte interphase (SEI) connected by polytitanosiloxane (PTS) is constructed via in situ condensation between tetraethyl orthosilicate/tetraethyl orthotitanate electrolyte additives and the Li anode. In the crosslinked PTS, the Si–O–Si bonds favor regular Li+ deposition, and strong Si–O–Ti linkages relieve the strain of volume variations and maintains the integrity of the SEI, thus synergistically improving the cycling stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110347</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6021-6343</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-02, Vol.32 (9), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2631847611 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Additives Anodes Decay rate dendrites Diffusion barriers electrolyte additives Electrolytes Flux density Interfacial properties Ion diffusion Lithium lithium metal anodes Materials science Robustness solid‐electrolyte interphase Tetraethyl orthosilicate Titanium |
title | Ion‐Conductive Polytitanosiloxane Networks Enable a Robust Solid‐Electrolyte Interface for Long‐Cycling Lithium Metal Anodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%E2%80%90Conductive%20Polytitanosiloxane%20Networks%20Enable%20a%20Robust%20Solid%E2%80%90Electrolyte%20Interface%20for%20Long%E2%80%90Cycling%20Lithium%20Metal%20Anodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhong,%20Yuan&rft.date=2022-02-01&rft.volume=32&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110347&rft_dat=%3Cproquest_cross%3E2631847611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-60d7d692c1d69362b0e1fa3e78ce8a5debe57e09464ac263810453f6914653ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2631847611&rft_id=info:pmid/&rfr_iscdi=true |