Loading…
A fuzzy approach for evaluation and selection of performance testing tools for modular software development
Performance of a software is an important feature to determine the quality of the software developed. Performance testing of modular software is a time consuming and costly task. Several performance testing tools (PTTs) are available in the market which help software developers to test their softwar...
Saved in:
Published in: | International journal of reliability, quality, and safety engineering quality, and safety engineering, 2022-02, Vol.29 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Performance of a software is an important feature to determine the quality of the software developed. Performance testing of modular software is a time consuming and costly task. Several performance testing tools (PTTs) are available in the market which help software developers to test their software performance. In this paper, we propose an integrated multiobjective optimization model for evaluation and selection of best-fit PTT for modular software system. The total performance tool cost is minimized and the fitness evaluation score of the PTTs is maximized. The fitness evaluation of PTT is done based on various attributes by making use of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The model allows the software developers to select the number of PTTs as per their requirement. The individual performance of the modules is considered based on some performance properties. The reusability constraints are considered, as a PTT can be used in the same module to test different properties and/or it can be used in different modules to test same or different performance properties. A real-world case study from the domain of enterprise resource planning (ERP) is used to show the working of the suggested optimization model. |
---|---|
ISSN: | 0218-5393 1793-6446 |
DOI: | 10.1142/S021853932150039X |