Loading…

Design and Optimization of One-Dimensional TiO2/GO Photonic Crystal Structures for Enhanced Thermophotovoltaics

In this paper, we theoretically explore the spectroscopic features of various one-dimensional photonic crystal (1D-PC)-based spectrally selective filters. The 1D-PC structure is composed of alternating layers of titanium dioxide (TiO2) and graphene oxide (GO). Employing the transfer matrix method (T...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2022-02, Vol.12 (2), p.129
Main Authors: Belhadj, Walid, Timoumi, Abdelmajid, Dakhlaoui, Hassen, Alhashmi Alamer, Fahad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we theoretically explore the spectroscopic features of various one-dimensional photonic crystal (1D-PC)-based spectrally selective filters. The 1D-PC structure is composed of alternating layers of titanium dioxide (TiO2) and graphene oxide (GO). Employing the transfer matrix method (TMM), the impacts of the incidence angle, the number, and thicknesses of TiO2/GO layers in various 1D-PC stacks on the spectroscopic features of the filters are explored in detail. The proposed 1D-PC structures are designed for practical use for thermophotovoltaic (TPV) applications to act as filters that selectively transmit light below 1.78 μm to a GaSb photovoltaic cell, while light with longer wavelengths is reflected back to the source. The optimal design presented here consists of two Bragg quarter-wave 1D-PC filters with different central frequencies stacked to form a single structure. We demonstrate that our optimized 1D-PC filter exhibits a large omnidirectional stop band as well as a broad pass band and weak absorption losses. These features meet the fundamental exigencies to realize high-efficiency TPV devices. Additionally, we show that when integrated in a TPV system, our optimized filter leads to a spectral efficiency of 64%, a device efficiency of 39%, and a power density of 8.2 W/cm2, at a source temperature of 1800 K.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12020129