Loading…
Effect of Copper Nanoparticles and Ions on Epididymis and Spermatozoa Viability of Chinese Soft-Shelled Turtles Pelodiscus sinensis
Copper nanoparticles (CuNPs) have been widely used in various industrial and commercial applications, which become a potential threat to aquatic organisms. Nevertheless, their potential toxicity to the epididymis and sperm remains little known. In this study, we evaluated the effect of CuNPs and cop...
Saved in:
Published in: | Coatings (Basel) 2022-02, Vol.12 (2), p.110 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Copper nanoparticles (CuNPs) have been widely used in various industrial and commercial applications, which become a potential threat to aquatic organisms. Nevertheless, their potential toxicity to the epididymis and sperm remains little known. In this study, we evaluated the effect of CuNPs and copper ions (CuSO4) on the spermatozoa viability, epididymal structure, antioxidant enzyme activity, and inflammatory cytokines in cauda epididymis of the Chinese soft-shelled turtle. Results showed that the spermatozoa viability of Chinese soft-shelled turtles decreased significantly with an increase in CuNPs or Cu ions concentrations. The epithelial cells of the epididymal duct of the Chinese soft-shelled turtles with the treatment of 5 mg kg−1 CuNPs were slightly swollen, and the connective tissue between the epididymal ducts was loose. The epithelial structure of the epididymal tube was severely damaged with an increase in Cu ion concentrations. Compared to the control, the antioxidative enzymes activities and the expression of IL-1β, TNF-α, and IL-6 mRNA in the epididymis significantly increased with the treatment of CuNPs or CuSO4. The present study revealed that Cu ions exert more harmful effect on the epididymis and spermatozoa viability of Chinese soft-shelled turtles than copper nanoparticles. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings12020110 |