Loading…

Application Strategies of Model Predictive Control for the Design and Operations of Renewable Energy-Based Microgrid: A Survey

In recent times, Microgrids (MG) have emerged as solution approach to establishing resilient power systems. However, the integration of Renewable Energy Resources (RERs) comes with a high degree of uncertainties due to heavy dependency on weather conditions. Hence, improper modeling of these uncerta...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-02, Vol.11 (4), p.554
Main Authors: Konneh, Keifa Vamba, Adewuyi, Oludamilare Bode, Lotfy, Mohammed Elsayed, Sun, Yanxia, Senjyu, Tomonobu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent times, Microgrids (MG) have emerged as solution approach to establishing resilient power systems. However, the integration of Renewable Energy Resources (RERs) comes with a high degree of uncertainties due to heavy dependency on weather conditions. Hence, improper modeling of these uncertainties can have adverse effects on the performance of the microgrid operations. Due to this effect, more advanced algorithms need to be explored to create stability in MGs’. The Model Predictive Control (MPC) technique has gained sound recognition due to its flexibility in executing controls and speed of processors. Thus, in this review paper, the superiority of MPC to several techniques used to model uncertainties is presented for both grid-connected and islanded system. It highlights the features, strengths and incompetencies of several modeling methods for MPCs and some of its variants regarding handling of uncertainties in MGs. This survey article will help researchers and model developers to come up with more robust model predictive control algorithms and techniques to cope with the changing nature of modern energy systems, especially with the increasing level of RERs penetration.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11040554