Loading…

Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes

The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2022-02, Vol.241, p.124533, Article 124533
Main Authors: Tachibana, Shogo, Hashimoto, Kei, Mizuno, Haruna, Ueno, Kazuhide, Watanabe, Masayoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433
cites cdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433
container_end_page
container_issue
container_start_page 124533
container_title Polymer (Guilford)
container_volume 241
creator Tachibana, Shogo
Hashimoto, Kei
Mizuno, Haruna
Ueno, Kazuhide
Watanabe, Masayoshi
description The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes. [Display omitted] •Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.
doi_str_mv 10.1016/j.polymer.2022.124533
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632981622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386122000209</els_id><sourcerecordid>2632981622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</originalsourceid><addsrcrecordid>eNqFkc9KAzEQxoMoWKuPIAQ8b5tMdtvsSaT4Dwpe9Byy2Qmm7G62SVbwUXxbUyt49BSG-b7fZOYj5JqzBWd8tdwtRt999hgWwAAWHMpKiBMy43ItCoCan5IZYwIKIVf8nFzEuGOMQQXljHzdW4smReotPVBc71qkEfcTDgapHlra-8FnOI0pTCZNAbN4oJsXoCOGHnVyufwRonnXgzO6o2PwuZkc_oDj1Fk_6ITt34xldjlDO7efXEuN70cfXcIM6ZugB4yX5MzqLuLV7zsnbw_3r5unYvvy-Ly52xamBJmKdakbza2Emol1ww2WiLkoLW-5BDS6quS60sLWDWeaS1G30mBV57NIKEsh5uTmyM1_zlvHpHZ-CkMeqWAloJZ8BZBV1VFlgo8xoFVjcL0On4ozdUhB7dRvCuqQgjqmkH23Rx_mFT5c7kbjDqdtXch3V613_xC-AbDWlsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632981622</pqid></control><display><type>article</type><title>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</title><source>Elsevier</source><creator>Tachibana, Shogo ; Hashimoto, Kei ; Mizuno, Haruna ; Ueno, Kazuhide ; Watanabe, Masayoshi</creator><creatorcontrib>Tachibana, Shogo ; Hashimoto, Kei ; Mizuno, Haruna ; Ueno, Kazuhide ; Watanabe, Masayoshi</creatorcontrib><description>The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes. [Display omitted] •Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2022.124533</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon dioxide ; CO2 separation membrane ; Copolymers ; Ductile fracture ; Fluorination ; Ionic liquid ; Ionic liquids ; Ions ; Mechanical properties ; Membrane permeability ; Membranes ; Monomers ; Penetration ; Permeability ; Polyimide ; Polyimide resins ; Polymers ; Separation</subject><ispartof>Polymer (Guilford), 2022-02, Vol.241, p.124533, Article 124533</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</citedby><cites>FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</cites><orcidid>0000-0003-4092-6150 ; 0000-0002-9774-3657 ; 0000-0002-4684-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tachibana, Shogo</creatorcontrib><creatorcontrib>Hashimoto, Kei</creatorcontrib><creatorcontrib>Mizuno, Haruna</creatorcontrib><creatorcontrib>Ueno, Kazuhide</creatorcontrib><creatorcontrib>Watanabe, Masayoshi</creatorcontrib><title>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</title><title>Polymer (Guilford)</title><description>The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes. [Display omitted] •Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.</description><subject>Carbon dioxide</subject><subject>CO2 separation membrane</subject><subject>Copolymers</subject><subject>Ductile fracture</subject><subject>Fluorination</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mechanical properties</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Penetration</subject><subject>Permeability</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Separation</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9KAzEQxoMoWKuPIAQ8b5tMdtvsSaT4Dwpe9Byy2Qmm7G62SVbwUXxbUyt49BSG-b7fZOYj5JqzBWd8tdwtRt999hgWwAAWHMpKiBMy43ItCoCan5IZYwIKIVf8nFzEuGOMQQXljHzdW4smReotPVBc71qkEfcTDgapHlra-8FnOI0pTCZNAbN4oJsXoCOGHnVyufwRonnXgzO6o2PwuZkc_oDj1Fk_6ITt34xldjlDO7efXEuN70cfXcIM6ZugB4yX5MzqLuLV7zsnbw_3r5unYvvy-Ly52xamBJmKdakbza2Emol1ww2WiLkoLW-5BDS6quS60sLWDWeaS1G30mBV57NIKEsh5uTmyM1_zlvHpHZ-CkMeqWAloJZ8BZBV1VFlgo8xoFVjcL0On4ozdUhB7dRvCuqQgjqmkH23Rx_mFT5c7kbjDqdtXch3V613_xC-AbDWlsM</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Tachibana, Shogo</creator><creator>Hashimoto, Kei</creator><creator>Mizuno, Haruna</creator><creator>Ueno, Kazuhide</creator><creator>Watanabe, Masayoshi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4092-6150</orcidid><orcidid>https://orcid.org/0000-0002-9774-3657</orcidid><orcidid>https://orcid.org/0000-0002-4684-5717</orcidid></search><sort><creationdate>20220215</creationdate><title>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</title><author>Tachibana, Shogo ; Hashimoto, Kei ; Mizuno, Haruna ; Ueno, Kazuhide ; Watanabe, Masayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>CO2 separation membrane</topic><topic>Copolymers</topic><topic>Ductile fracture</topic><topic>Fluorination</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mechanical properties</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Penetration</topic><topic>Permeability</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tachibana, Shogo</creatorcontrib><creatorcontrib>Hashimoto, Kei</creatorcontrib><creatorcontrib>Mizuno, Haruna</creatorcontrib><creatorcontrib>Ueno, Kazuhide</creatorcontrib><creatorcontrib>Watanabe, Masayoshi</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tachibana, Shogo</au><au>Hashimoto, Kei</au><au>Mizuno, Haruna</au><au>Ueno, Kazuhide</au><au>Watanabe, Masayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>241</volume><spage>124533</spage><pages>124533-</pages><artnum>124533</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes. [Display omitted] •Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2022.124533</doi><orcidid>https://orcid.org/0000-0003-4092-6150</orcidid><orcidid>https://orcid.org/0000-0002-9774-3657</orcidid><orcidid>https://orcid.org/0000-0002-4684-5717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2022-02, Vol.241, p.124533, Article 124533
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2632981622
source Elsevier
subjects Carbon dioxide
CO2 separation membrane
Copolymers
Ductile fracture
Fluorination
Ionic liquid
Ionic liquids
Ions
Mechanical properties
Membrane permeability
Membranes
Monomers
Penetration
Permeability
Polyimide
Polyimide resins
Polymers
Separation
title Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20polyimide%20sequence%20and%20monomer%20structures%20on%20CO2%20permeation%20and%20mechanical%20properties%20of%20sulfonated%20polyimide/ionic%20liquid%20composite%20membranes&rft.jtitle=Polymer%20(Guilford)&rft.au=Tachibana,%20Shogo&rft.date=2022-02-15&rft.volume=241&rft.spage=124533&rft.pages=124533-&rft.artnum=124533&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2022.124533&rft_dat=%3Cproquest_cross%3E2632981622%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632981622&rft_id=info:pmid/&rfr_iscdi=true