Loading…
Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes
The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock...
Saved in:
Published in: | Polymer (Guilford) 2022-02, Vol.241, p.124533, Article 124533 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433 |
container_end_page | |
container_issue | |
container_start_page | 124533 |
container_title | Polymer (Guilford) |
container_volume | 241 |
creator | Tachibana, Shogo Hashimoto, Kei Mizuno, Haruna Ueno, Kazuhide Watanabe, Masayoshi |
description | The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes.
[Display omitted]
•Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties. |
doi_str_mv | 10.1016/j.polymer.2022.124533 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632981622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386122000209</els_id><sourcerecordid>2632981622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</originalsourceid><addsrcrecordid>eNqFkc9KAzEQxoMoWKuPIAQ8b5tMdtvsSaT4Dwpe9Byy2Qmm7G62SVbwUXxbUyt49BSG-b7fZOYj5JqzBWd8tdwtRt999hgWwAAWHMpKiBMy43ItCoCan5IZYwIKIVf8nFzEuGOMQQXljHzdW4smReotPVBc71qkEfcTDgapHlra-8FnOI0pTCZNAbN4oJsXoCOGHnVyufwRonnXgzO6o2PwuZkc_oDj1Fk_6ITt34xldjlDO7efXEuN70cfXcIM6ZugB4yX5MzqLuLV7zsnbw_3r5unYvvy-Ly52xamBJmKdakbza2Emol1ww2WiLkoLW-5BDS6quS60sLWDWeaS1G30mBV57NIKEsh5uTmyM1_zlvHpHZ-CkMeqWAloJZ8BZBV1VFlgo8xoFVjcL0On4ozdUhB7dRvCuqQgjqmkH23Rx_mFT5c7kbjDqdtXch3V613_xC-AbDWlsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632981622</pqid></control><display><type>article</type><title>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</title><source>Elsevier</source><creator>Tachibana, Shogo ; Hashimoto, Kei ; Mizuno, Haruna ; Ueno, Kazuhide ; Watanabe, Masayoshi</creator><creatorcontrib>Tachibana, Shogo ; Hashimoto, Kei ; Mizuno, Haruna ; Ueno, Kazuhide ; Watanabe, Masayoshi</creatorcontrib><description>The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes.
[Display omitted]
•Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2022.124533</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon dioxide ; CO2 separation membrane ; Copolymers ; Ductile fracture ; Fluorination ; Ionic liquid ; Ionic liquids ; Ions ; Mechanical properties ; Membrane permeability ; Membranes ; Monomers ; Penetration ; Permeability ; Polyimide ; Polyimide resins ; Polymers ; Separation</subject><ispartof>Polymer (Guilford), 2022-02, Vol.241, p.124533, Article 124533</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</citedby><cites>FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</cites><orcidid>0000-0003-4092-6150 ; 0000-0002-9774-3657 ; 0000-0002-4684-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tachibana, Shogo</creatorcontrib><creatorcontrib>Hashimoto, Kei</creatorcontrib><creatorcontrib>Mizuno, Haruna</creatorcontrib><creatorcontrib>Ueno, Kazuhide</creatorcontrib><creatorcontrib>Watanabe, Masayoshi</creatorcontrib><title>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</title><title>Polymer (Guilford)</title><description>The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes.
[Display omitted]
•Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.</description><subject>Carbon dioxide</subject><subject>CO2 separation membrane</subject><subject>Copolymers</subject><subject>Ductile fracture</subject><subject>Fluorination</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mechanical properties</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Penetration</subject><subject>Permeability</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Separation</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9KAzEQxoMoWKuPIAQ8b5tMdtvsSaT4Dwpe9Byy2Qmm7G62SVbwUXxbUyt49BSG-b7fZOYj5JqzBWd8tdwtRt999hgWwAAWHMpKiBMy43ItCoCan5IZYwIKIVf8nFzEuGOMQQXljHzdW4smReotPVBc71qkEfcTDgapHlra-8FnOI0pTCZNAbN4oJsXoCOGHnVyufwRonnXgzO6o2PwuZkc_oDj1Fk_6ITt34xldjlDO7efXEuN70cfXcIM6ZugB4yX5MzqLuLV7zsnbw_3r5unYvvy-Ly52xamBJmKdakbza2Emol1ww2WiLkoLW-5BDS6quS60sLWDWeaS1G30mBV57NIKEsh5uTmyM1_zlvHpHZ-CkMeqWAloJZ8BZBV1VFlgo8xoFVjcL0On4ozdUhB7dRvCuqQgjqmkH23Rx_mFT5c7kbjDqdtXch3V613_xC-AbDWlsM</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Tachibana, Shogo</creator><creator>Hashimoto, Kei</creator><creator>Mizuno, Haruna</creator><creator>Ueno, Kazuhide</creator><creator>Watanabe, Masayoshi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4092-6150</orcidid><orcidid>https://orcid.org/0000-0002-9774-3657</orcidid><orcidid>https://orcid.org/0000-0002-4684-5717</orcidid></search><sort><creationdate>20220215</creationdate><title>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</title><author>Tachibana, Shogo ; Hashimoto, Kei ; Mizuno, Haruna ; Ueno, Kazuhide ; Watanabe, Masayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>CO2 separation membrane</topic><topic>Copolymers</topic><topic>Ductile fracture</topic><topic>Fluorination</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mechanical properties</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Penetration</topic><topic>Permeability</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tachibana, Shogo</creatorcontrib><creatorcontrib>Hashimoto, Kei</creatorcontrib><creatorcontrib>Mizuno, Haruna</creatorcontrib><creatorcontrib>Ueno, Kazuhide</creatorcontrib><creatorcontrib>Watanabe, Masayoshi</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tachibana, Shogo</au><au>Hashimoto, Kei</au><au>Mizuno, Haruna</au><au>Ueno, Kazuhide</au><au>Watanabe, Masayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>241</volume><spage>124533</spage><pages>124533-</pages><artnum>124533</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The effects of polymer structure on CO2 separation and mechanical properties of ion gel membranes composed of ionic liquids (ILs) and sulfonated polyimides (SPIs) were investigated. SPIs with different sequential distributions of ionic groups (multiblock and random) were synthesized. The multiblock copolymer exhibited higher IL uptake (∼80 wt.%) than the random copolymer, resulting in higher CO2 permeability (∼480 Barrer). The multiblock copolymer exhibited a clearer phase-separated structure than the random copolymer. However, the strain at the break of the multiblock copolymer was lower owing to the brittleness of the non-ionic phase. To improve the mechanical properties, an SPI containing fluorinated groups as a non-ionic part was also synthesized. Compared with the random SPI ion gel membranes, the multiblock SPI ion gel membranes containing fluorinated groups exhibited good CO2 permeability (∼500 Barrer) and simultaneously ductile properties with higher strain at the break due to the plasticization of the non-ionic phase, enabling a thin and tough membrane with excellent CO2 separation properties. These results indicate that the polyimide sequence in addition to the chemical structure of monomers affects CO2 permeation and mechanical properties of the sulfonated polyimide/ionic liquid composite membranes.
[Display omitted]
•Composite membranes composed of ionic liquid (IL) and multiblock-type sulfonated polyimide (SPI) were prepared.•Polymer sequence effects on gas transport and mechanical properties were investigated.•Multiblock copolymer exhibited higher CO2 permeability than random copolymer.•Modification of polymer sequence and structure could control the CO2 permeation and mechanical properties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2022.124533</doi><orcidid>https://orcid.org/0000-0003-4092-6150</orcidid><orcidid>https://orcid.org/0000-0002-9774-3657</orcidid><orcidid>https://orcid.org/0000-0002-4684-5717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2022-02, Vol.241, p.124533, Article 124533 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2632981622 |
source | Elsevier |
subjects | Carbon dioxide CO2 separation membrane Copolymers Ductile fracture Fluorination Ionic liquid Ionic liquids Ions Mechanical properties Membrane permeability Membranes Monomers Penetration Permeability Polyimide Polyimide resins Polymers Separation |
title | Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20polyimide%20sequence%20and%20monomer%20structures%20on%20CO2%20permeation%20and%20mechanical%20properties%20of%20sulfonated%20polyimide/ionic%20liquid%20composite%20membranes&rft.jtitle=Polymer%20(Guilford)&rft.au=Tachibana,%20Shogo&rft.date=2022-02-15&rft.volume=241&rft.spage=124533&rft.pages=124533-&rft.artnum=124533&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2022.124533&rft_dat=%3Cproquest_cross%3E2632981622%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-74aba1f829037b1ce4ee8294f1d182eca55875a3f9b10a1839d8ce59291824433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632981622&rft_id=info:pmid/&rfr_iscdi=true |