Loading…
Spatial Cox processes in an infinite-dimensional framework
We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram oper...
Saved in:
Published in: | Test (Madrid, Spain) Spain), 2022-03, Vol.31 (1), p.175-203 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3 |
container_end_page | 203 |
container_issue | 1 |
container_start_page | 175 |
container_title | Test (Madrid, Spain) |
container_volume | 31 |
creator | Frías, María P. Torres-Signes, Antoni Ruiz-Medina, María D. Mateu, Jorge |
description | We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015. |
doi_str_mv | 10.1007/s11749-021-00773-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633262589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633262589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbmzZN3cngCwZcqOuQ5iEZZ9qadFDn1xut4M7NfcB3DodDyCmDcwZQXyTG6rKhgIzmt-Z0t0dmTApOJQrYzzfjnIKQ4pAcpbQCEKVANiOXj4Meg14Xi_6jGGJvXEouFaErdJenD10YHbVh47oU-i6DPuqNe-_j6zE58Hqd3MnvnpPnm-unxR1dPtzeL66W1PAKR-pazDkqXnLPnbW6QWy8LZkGKRrrZVvJGoyBsgaGZcsaZmxrq1aCNICm5XNyNvnmeG9bl0a16rcxR0kKBecosJJNpnCiTOxTis6rIYaNjp-KgfruSE0dqdyR-ulI7bKIT6KU4e7FxT_rf1RfX6Jpug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633262589</pqid></control><display><type>article</type><title>Spatial Cox processes in an infinite-dimensional framework</title><source>Springer Nature</source><creator>Frías, María P. ; Torres-Signes, Antoni ; Ruiz-Medina, María D. ; Mateu, Jorge</creator><creatorcontrib>Frías, María P. ; Torres-Signes, Antoni ; Ruiz-Medina, María D. ; Mateu, Jorge</creatorcontrib><description>We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-021-00773-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Original Paper ; Respiratory diseases ; Statistical Theory and Methods ; Statistics ; Statistics for Business</subject><ispartof>Test (Madrid, Spain), 2022-03, Vol.31 (1), p.175-203</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2021</rights><rights>Sociedad de Estadística e Investigación Operativa 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</citedby><cites>FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</cites><orcidid>0000-0001-7445-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frías, María P.</creatorcontrib><creatorcontrib>Torres-Signes, Antoni</creatorcontrib><creatorcontrib>Ruiz-Medina, María D.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><title>Spatial Cox processes in an infinite-dimensional framework</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.</description><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Respiratory diseases</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbmzZN3cngCwZcqOuQ5iEZZ9qadFDn1xut4M7NfcB3DodDyCmDcwZQXyTG6rKhgIzmt-Z0t0dmTApOJQrYzzfjnIKQ4pAcpbQCEKVANiOXj4Meg14Xi_6jGGJvXEouFaErdJenD10YHbVh47oU-i6DPuqNe-_j6zE58Hqd3MnvnpPnm-unxR1dPtzeL66W1PAKR-pazDkqXnLPnbW6QWy8LZkGKRrrZVvJGoyBsgaGZcsaZmxrq1aCNICm5XNyNvnmeG9bl0a16rcxR0kKBecosJJNpnCiTOxTis6rIYaNjp-KgfruSE0dqdyR-ulI7bKIT6KU4e7FxT_rf1RfX6Jpug</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Frías, María P.</creator><creator>Torres-Signes, Antoni</creator><creator>Ruiz-Medina, María D.</creator><creator>Mateu, Jorge</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7445-7060</orcidid></search><sort><creationdate>20220301</creationdate><title>Spatial Cox processes in an infinite-dimensional framework</title><author>Frías, María P. ; Torres-Signes, Antoni ; Ruiz-Medina, María D. ; Mateu, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Respiratory diseases</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frías, María P.</creatorcontrib><creatorcontrib>Torres-Signes, Antoni</creatorcontrib><creatorcontrib>Ruiz-Medina, María D.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frías, María P.</au><au>Torres-Signes, Antoni</au><au>Ruiz-Medina, María D.</au><au>Mateu, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Cox processes in an infinite-dimensional framework</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>31</volume><issue>1</issue><spage>175</spage><epage>203</epage><pages>175-203</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-021-00773-z</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7445-7060</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0686 |
ispartof | Test (Madrid, Spain), 2022-03, Vol.31 (1), p.175-203 |
issn | 1133-0686 1863-8260 |
language | eng |
recordid | cdi_proquest_journals_2633262589 |
source | Springer Nature |
subjects | Economics Finance Insurance Management Mathematics and Statistics Original Paper Respiratory diseases Statistical Theory and Methods Statistics Statistics for Business |
title | Spatial Cox processes in an infinite-dimensional framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Cox%20processes%20in%20an%20infinite-dimensional%20framework&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Fr%C3%ADas,%20Mar%C3%ADa%20P.&rft.date=2022-03-01&rft.volume=31&rft.issue=1&rft.spage=175&rft.epage=203&rft.pages=175-203&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-021-00773-z&rft_dat=%3Cproquest_cross%3E2633262589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633262589&rft_id=info:pmid/&rfr_iscdi=true |