Loading…

Spatial Cox processes in an infinite-dimensional framework

We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram oper...

Full description

Saved in:
Bibliographic Details
Published in:Test (Madrid, Spain) Spain), 2022-03, Vol.31 (1), p.175-203
Main Authors: Frías, María P., Torres-Signes, Antoni, Ruiz-Medina, María D., Mateu, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3
cites cdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3
container_end_page 203
container_issue 1
container_start_page 175
container_title Test (Madrid, Spain)
container_volume 31
creator Frías, María P.
Torres-Signes, Antoni
Ruiz-Medina, María D.
Mateu, Jorge
description We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.
doi_str_mv 10.1007/s11749-021-00773-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633262589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633262589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbmzZN3cngCwZcqOuQ5iEZZ9qadFDn1xut4M7NfcB3DodDyCmDcwZQXyTG6rKhgIzmt-Z0t0dmTApOJQrYzzfjnIKQ4pAcpbQCEKVANiOXj4Meg14Xi_6jGGJvXEouFaErdJenD10YHbVh47oU-i6DPuqNe-_j6zE58Hqd3MnvnpPnm-unxR1dPtzeL66W1PAKR-pazDkqXnLPnbW6QWy8LZkGKRrrZVvJGoyBsgaGZcsaZmxrq1aCNICm5XNyNvnmeG9bl0a16rcxR0kKBecosJJNpnCiTOxTis6rIYaNjp-KgfruSE0dqdyR-ulI7bKIT6KU4e7FxT_rf1RfX6Jpug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633262589</pqid></control><display><type>article</type><title>Spatial Cox processes in an infinite-dimensional framework</title><source>Springer Nature</source><creator>Frías, María P. ; Torres-Signes, Antoni ; Ruiz-Medina, María D. ; Mateu, Jorge</creator><creatorcontrib>Frías, María P. ; Torres-Signes, Antoni ; Ruiz-Medina, María D. ; Mateu, Jorge</creatorcontrib><description>We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-021-00773-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Original Paper ; Respiratory diseases ; Statistical Theory and Methods ; Statistics ; Statistics for Business</subject><ispartof>Test (Madrid, Spain), 2022-03, Vol.31 (1), p.175-203</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2021</rights><rights>Sociedad de Estadística e Investigación Operativa 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</citedby><cites>FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</cites><orcidid>0000-0001-7445-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frías, María P.</creatorcontrib><creatorcontrib>Torres-Signes, Antoni</creatorcontrib><creatorcontrib>Ruiz-Medina, María D.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><title>Spatial Cox processes in an infinite-dimensional framework</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.</description><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Respiratory diseases</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbmzZN3cngCwZcqOuQ5iEZZ9qadFDn1xut4M7NfcB3DodDyCmDcwZQXyTG6rKhgIzmt-Z0t0dmTApOJQrYzzfjnIKQ4pAcpbQCEKVANiOXj4Meg14Xi_6jGGJvXEouFaErdJenD10YHbVh47oU-i6DPuqNe-_j6zE58Hqd3MnvnpPnm-unxR1dPtzeL66W1PAKR-pazDkqXnLPnbW6QWy8LZkGKRrrZVvJGoyBsgaGZcsaZmxrq1aCNICm5XNyNvnmeG9bl0a16rcxR0kKBecosJJNpnCiTOxTis6rIYaNjp-KgfruSE0dqdyR-ulI7bKIT6KU4e7FxT_rf1RfX6Jpug</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Frías, María P.</creator><creator>Torres-Signes, Antoni</creator><creator>Ruiz-Medina, María D.</creator><creator>Mateu, Jorge</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7445-7060</orcidid></search><sort><creationdate>20220301</creationdate><title>Spatial Cox processes in an infinite-dimensional framework</title><author>Frías, María P. ; Torres-Signes, Antoni ; Ruiz-Medina, María D. ; Mateu, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Respiratory diseases</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frías, María P.</creatorcontrib><creatorcontrib>Torres-Signes, Antoni</creatorcontrib><creatorcontrib>Ruiz-Medina, María D.</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frías, María P.</au><au>Torres-Signes, Antoni</au><au>Ruiz-Medina, María D.</au><au>Mateu, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Cox processes in an infinite-dimensional framework</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>31</volume><issue>1</issue><spage>175</spage><epage>203</epage><pages>175-203</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-021-00773-z</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7445-7060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2022-03, Vol.31 (1), p.175-203
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_journals_2633262589
source Springer Nature
subjects Economics
Finance
Insurance
Management
Mathematics and Statistics
Original Paper
Respiratory diseases
Statistical Theory and Methods
Statistics
Statistics for Business
title Spatial Cox processes in an infinite-dimensional framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Cox%20processes%20in%20an%20infinite-dimensional%20framework&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Fr%C3%ADas,%20Mar%C3%ADa%20P.&rft.date=2022-03-01&rft.volume=31&rft.issue=1&rft.spage=175&rft.epage=203&rft.pages=175-203&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-021-00773-z&rft_dat=%3Cproquest_cross%3E2633262589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-eb28635343f3edda9229fd41a0869df8b5870cc0470124b191cdbd5b808c02cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633262589&rft_id=info:pmid/&rfr_iscdi=true