Loading…
Magnetization for Burgers’ Fluid Subject to Convective Heating and Heterogeneous-Homogeneous Reactions
The flow of Burgers’ fluid in the magnetic field new mathematical modeling is introduced in this article which is heated convectively and maintained. The thermal energy transport aspects are examined by employing the space- and temperature-related heat source. In the present investigation, the homog...
Saved in:
Published in: | Mathematical problems in engineering 2022-02, Vol.2022, p.1-15 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The flow of Burgers’ fluid in the magnetic field new mathematical modeling is introduced in this article which is heated convectively and maintained. The thermal energy transport aspects are examined by employing the space- and temperature-related heat source. In the present investigation, the homogeneous-heterogeneous reactions will present the features of scrutiny of the fluid concentration. For the purpose of dimensionless similarity transformations, ordinary differential equations (ODEs) are utilized practically. Developed ODEs are solved by introducing the concepts of Runge–Kutta–Fehlberg’s fourth-fifth method. The graphs show the pertinent outcome. The relaxation time parameter is exhibited by diminishing the thermal distribution of Burgers’ fluid property, and this will depend on the relaxation time factor. Biot number and retardation time factor behaviors are analyzed by opposing the behavior of the material factor of Burgers’ fluid. The response of homogeneous strength is deteriorated by the concentration rate of the fluid, and this will augment the data using the heterogeneous response with greater magnitude. By using already published studies, it is investigated that the present investigation is validated. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/2747676 |