Loading…

Synthesis of Zno Nanorods by Hydrothermal Method for Gas Sensor Applications

ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are ch...

Full description

Saved in:
Bibliographic Details
Published in:International journal on smart sensing and intelligent systems 2012-01, Vol.5 (1), p.57-70
Main Authors: Shinde, Sarika D., Patil, G. E., Kajale, D. D., Ahire, D. V., Gaikwad, V. B., Jain, G. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903
cites cdi_FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903
container_end_page 70
container_issue 1
container_start_page 57
container_title International journal on smart sensing and intelligent systems
container_volume 5
creator Shinde, Sarika D.
Patil, G. E.
Kajale, D. D.
Ahire, D. V.
Gaikwad, V. B.
Jain, G. H.
description ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated for various interfering gases such as CO , CO, Ethanol, NH and H S etc at operating temperature from 30° (room temperature) to 300°C. The results indicate that the ZnO nanorod thick films showed much better sensitivity and stability than the conventional materials to H S gas at 30°C. The nanoshaped pillar can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.
doi_str_mv 10.21307/ijssis-2017-470
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634133187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634133187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOObuHgOeqy9Nmx_gZQzdhKmH6cVLSJvUdXRNTTqk__2iFfTiu7wvvO_n--CL0CWB65RQ4Df1LoQ6JCkQnmQcTtCEEC6SnIE4_aPP0SyEHcShMuWETdB6M7T91kYYuwq_tQ4_6dZ5ZwIuBrwajHfx7Pe6wY-23zqDK-fxUge8sW2Ict51TV3qvnZtuEBnlW6Cnf3sKXq9v3tZrJL18_JhMV8nJWWsTyrDuLElZEZkpSwKKFMDVVYYLm2ViVxSSoxMATQ1UjImICei0Dal1BCQQKfoasztvPs42NCrnTv4Nr5UKaMZibzg0QWjq_QuBG8r1fl6r_2gCKjv2tRYm_qqTcXaInI7Ip-66a039t0fhih-8_9Dc5JzegRwD3Vj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634133187</pqid></control><display><type>article</type><title>Synthesis of Zno Nanorods by Hydrothermal Method for Gas Sensor Applications</title><source>ProQuest - Publicly Available Content Database</source><creator>Shinde, Sarika D. ; Patil, G. E. ; Kajale, D. D. ; Ahire, D. V. ; Gaikwad, V. B. ; Jain, G. H.</creator><creatorcontrib>Shinde, Sarika D. ; Patil, G. E. ; Kajale, D. D. ; Ahire, D. V. ; Gaikwad, V. B. ; Jain, G. H.</creatorcontrib><description>ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated for various interfering gases such as CO , CO, Ethanol, NH and H S etc at operating temperature from 30° (room temperature) to 300°C. The results indicate that the ZnO nanorod thick films showed much better sensitivity and stability than the conventional materials to H S gas at 30°C. The nanoshaped pillar can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.</description><identifier>ISSN: 1178-5608</identifier><identifier>EISSN: 1178-5608</identifier><identifier>DOI: 10.21307/ijssis-2017-470</identifier><language>eng</language><publisher>Sydney: Sciendo</publisher><subject>Ammonia ; Cetyltrimethylammonium bromide ; CTAB ; Diffraction patterns ; Electron microscopes ; Electron microscopy ; Ethanol ; gas response ; Gas sensors ; Gases ; Hydrogen sulfide ; Hydrothermal ; Microscopy ; Nanorods ; Operating temperature ; Room temperature ; S gas sensor ; Screen printing ; Selectivity ; Sensitivity ; Sensors ; Thick films ; Zinc acetate ; Zinc oxide ; ZnO nanorods</subject><ispartof>International journal on smart sensing and intelligent systems, 2012-01, Vol.5 (1), p.57-70</ispartof><rights>2012. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903</citedby><cites>FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2634133187?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Shinde, Sarika D.</creatorcontrib><creatorcontrib>Patil, G. E.</creatorcontrib><creatorcontrib>Kajale, D. D.</creatorcontrib><creatorcontrib>Ahire, D. V.</creatorcontrib><creatorcontrib>Gaikwad, V. B.</creatorcontrib><creatorcontrib>Jain, G. H.</creatorcontrib><title>Synthesis of Zno Nanorods by Hydrothermal Method for Gas Sensor Applications</title><title>International journal on smart sensing and intelligent systems</title><description>ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated for various interfering gases such as CO , CO, Ethanol, NH and H S etc at operating temperature from 30° (room temperature) to 300°C. The results indicate that the ZnO nanorod thick films showed much better sensitivity and stability than the conventional materials to H S gas at 30°C. The nanoshaped pillar can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.</description><subject>Ammonia</subject><subject>Cetyltrimethylammonium bromide</subject><subject>CTAB</subject><subject>Diffraction patterns</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Ethanol</subject><subject>gas response</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Hydrogen sulfide</subject><subject>Hydrothermal</subject><subject>Microscopy</subject><subject>Nanorods</subject><subject>Operating temperature</subject><subject>Room temperature</subject><subject>S gas sensor</subject><subject>Screen printing</subject><subject>Selectivity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Thick films</subject><subject>Zinc acetate</subject><subject>Zinc oxide</subject><subject>ZnO nanorods</subject><issn>1178-5608</issn><issn>1178-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kM9LwzAUx4MoOObuHgOeqy9Nmx_gZQzdhKmH6cVLSJvUdXRNTTqk__2iFfTiu7wvvO_n--CL0CWB65RQ4Df1LoQ6JCkQnmQcTtCEEC6SnIE4_aPP0SyEHcShMuWETdB6M7T91kYYuwq_tQ4_6dZ5ZwIuBrwajHfx7Pe6wY-23zqDK-fxUge8sW2Ict51TV3qvnZtuEBnlW6Cnf3sKXq9v3tZrJL18_JhMV8nJWWsTyrDuLElZEZkpSwKKFMDVVYYLm2ViVxSSoxMATQ1UjImICei0Dal1BCQQKfoasztvPs42NCrnTv4Nr5UKaMZibzg0QWjq_QuBG8r1fl6r_2gCKjv2tRYm_qqTcXaInI7Ip-66a039t0fhih-8_9Dc5JzegRwD3Vj</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Shinde, Sarika D.</creator><creator>Patil, G. E.</creator><creator>Kajale, D. D.</creator><creator>Ahire, D. V.</creator><creator>Gaikwad, V. B.</creator><creator>Jain, G. H.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Synthesis of Zno Nanorods by Hydrothermal Method for Gas Sensor Applications</title><author>Shinde, Sarika D. ; Patil, G. E. ; Kajale, D. D. ; Ahire, D. V. ; Gaikwad, V. B. ; Jain, G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonia</topic><topic>Cetyltrimethylammonium bromide</topic><topic>CTAB</topic><topic>Diffraction patterns</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Ethanol</topic><topic>gas response</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Hydrogen sulfide</topic><topic>Hydrothermal</topic><topic>Microscopy</topic><topic>Nanorods</topic><topic>Operating temperature</topic><topic>Room temperature</topic><topic>S gas sensor</topic><topic>Screen printing</topic><topic>Selectivity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Thick films</topic><topic>Zinc acetate</topic><topic>Zinc oxide</topic><topic>ZnO nanorods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinde, Sarika D.</creatorcontrib><creatorcontrib>Patil, G. E.</creatorcontrib><creatorcontrib>Kajale, D. D.</creatorcontrib><creatorcontrib>Ahire, D. V.</creatorcontrib><creatorcontrib>Gaikwad, V. B.</creatorcontrib><creatorcontrib>Jain, G. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal on smart sensing and intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinde, Sarika D.</au><au>Patil, G. E.</au><au>Kajale, D. D.</au><au>Ahire, D. V.</au><au>Gaikwad, V. B.</au><au>Jain, G. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Zno Nanorods by Hydrothermal Method for Gas Sensor Applications</atitle><jtitle>International journal on smart sensing and intelligent systems</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>5</volume><issue>1</issue><spage>57</spage><epage>70</epage><pages>57-70</pages><issn>1178-5608</issn><eissn>1178-5608</eissn><abstract>ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated for various interfering gases such as CO , CO, Ethanol, NH and H S etc at operating temperature from 30° (room temperature) to 300°C. The results indicate that the ZnO nanorod thick films showed much better sensitivity and stability than the conventional materials to H S gas at 30°C. The nanoshaped pillar can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.</abstract><cop>Sydney</cop><pub>Sciendo</pub><doi>10.21307/ijssis-2017-470</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-5608
ispartof International journal on smart sensing and intelligent systems, 2012-01, Vol.5 (1), p.57-70
issn 1178-5608
1178-5608
language eng
recordid cdi_proquest_journals_2634133187
source ProQuest - Publicly Available Content Database
subjects Ammonia
Cetyltrimethylammonium bromide
CTAB
Diffraction patterns
Electron microscopes
Electron microscopy
Ethanol
gas response
Gas sensors
Gases
Hydrogen sulfide
Hydrothermal
Microscopy
Nanorods
Operating temperature
Room temperature
S gas sensor
Screen printing
Selectivity
Sensitivity
Sensors
Thick films
Zinc acetate
Zinc oxide
ZnO nanorods
title Synthesis of Zno Nanorods by Hydrothermal Method for Gas Sensor Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Zno%20Nanorods%20by%20Hydrothermal%20Method%20for%20Gas%20Sensor%20Applications&rft.jtitle=International%20journal%20on%20smart%20sensing%20and%20intelligent%20systems&rft.au=Shinde,%20Sarika%20D.&rft.date=2012-01-01&rft.volume=5&rft.issue=1&rft.spage=57&rft.epage=70&rft.pages=57-70&rft.issn=1178-5608&rft.eissn=1178-5608&rft_id=info:doi/10.21307/ijssis-2017-470&rft_dat=%3Cproquest_cross%3E2634133187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-fd67dec04d84c9bb0c2d0f4bd79ef4859331d9200a3d996680518bae233d10903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634133187&rft_id=info:pmid/&rfr_iscdi=true