Loading…
An ultraweak variational method for parameterized linear differential-algebraic equations
We investigate an ultraweak variational formulation for (parameterized) linear differential-algebraic equations (DAEs) w.r.t. the time variable which yields an optimally stable system. This is used within a Petrov-Galerkin method to derive a certified detailed discretization which provides an approx...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Beurer, Emil Feuerle, Moritz Reich, Niklas Urban, Karsten |
description | We investigate an ultraweak variational formulation for (parameterized) linear differential-algebraic equations (DAEs) w.r.t. the time variable which yields an optimally stable system. This is used within a Petrov-Galerkin method to derive a certified detailed discretization which provides an approximate solution in an ultraweak setting as well as for model reduction w.r.t. time in the spirit of the Reduced Basis Method (RBM). A computable sharp error bound is derived. Numerical experiments are presented that show that this method yields a significant reduction and can be combined with well-known system theoretic methods such as Balanced Truncation to reduce the size of the DAE. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2634286887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634286887</sourcerecordid><originalsourceid>FETCH-proquest_journals_26342868873</originalsourceid><addsrcrecordid>eNqNjUsKwjAURYMgWLR7CDgu1KS_qYjiApw4kqd90dSYtC-Jgqu3iAtwdDlwOHfCEiHlKmsKIWYs9b7L81xUtShLmbDj2vJoAsEL4c6fQBqCdhYMf2C4uZYrR7wHghGR9BtbbrRFIN5qpZDQBg0mA3PFM4G-cBzit-AXbKrAeEx_O2fL3faw2Wc9uSGiD6fORRqf_ElUshBN1TS1_M_6AIO1Q6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634286887</pqid></control><display><type>article</type><title>An ultraweak variational method for parameterized linear differential-algebraic equations</title><source>Publicly Available Content Database</source><creator>Beurer, Emil ; Feuerle, Moritz ; Reich, Niklas ; Urban, Karsten</creator><creatorcontrib>Beurer, Emil ; Feuerle, Moritz ; Reich, Niklas ; Urban, Karsten</creatorcontrib><description>We investigate an ultraweak variational formulation for (parameterized) linear differential-algebraic equations (DAEs) w.r.t. the time variable which yields an optimally stable system. This is used within a Petrov-Galerkin method to derive a certified detailed discretization which provides an approximate solution in an ultraweak setting as well as for model reduction w.r.t. time in the spirit of the Reduced Basis Method (RBM). A computable sharp error bound is derived. Numerical experiments are presented that show that this method yields a significant reduction and can be combined with well-known system theoretic methods such as Balanced Truncation to reduce the size of the DAE.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Differential equations ; Galerkin method ; Mathematical analysis ; Model reduction ; Parameterization ; Systems theory</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2634286887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Beurer, Emil</creatorcontrib><creatorcontrib>Feuerle, Moritz</creatorcontrib><creatorcontrib>Reich, Niklas</creatorcontrib><creatorcontrib>Urban, Karsten</creatorcontrib><title>An ultraweak variational method for parameterized linear differential-algebraic equations</title><title>arXiv.org</title><description>We investigate an ultraweak variational formulation for (parameterized) linear differential-algebraic equations (DAEs) w.r.t. the time variable which yields an optimally stable system. This is used within a Petrov-Galerkin method to derive a certified detailed discretization which provides an approximate solution in an ultraweak setting as well as for model reduction w.r.t. time in the spirit of the Reduced Basis Method (RBM). A computable sharp error bound is derived. Numerical experiments are presented that show that this method yields a significant reduction and can be combined with well-known system theoretic methods such as Balanced Truncation to reduce the size of the DAE.</description><subject>Algebra</subject><subject>Differential equations</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Model reduction</subject><subject>Parameterization</subject><subject>Systems theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUsKwjAURYMgWLR7CDgu1KS_qYjiApw4kqd90dSYtC-Jgqu3iAtwdDlwOHfCEiHlKmsKIWYs9b7L81xUtShLmbDj2vJoAsEL4c6fQBqCdhYMf2C4uZYrR7wHghGR9BtbbrRFIN5qpZDQBg0mA3PFM4G-cBzit-AXbKrAeEx_O2fL3faw2Wc9uSGiD6fORRqf_ElUshBN1TS1_M_6AIO1Q6A</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Beurer, Emil</creator><creator>Feuerle, Moritz</creator><creator>Reich, Niklas</creator><creator>Urban, Karsten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220325</creationdate><title>An ultraweak variational method for parameterized linear differential-algebraic equations</title><author>Beurer, Emil ; Feuerle, Moritz ; Reich, Niklas ; Urban, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26342868873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Differential equations</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Model reduction</topic><topic>Parameterization</topic><topic>Systems theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Beurer, Emil</creatorcontrib><creatorcontrib>Feuerle, Moritz</creatorcontrib><creatorcontrib>Reich, Niklas</creatorcontrib><creatorcontrib>Urban, Karsten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beurer, Emil</au><au>Feuerle, Moritz</au><au>Reich, Niklas</au><au>Urban, Karsten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An ultraweak variational method for parameterized linear differential-algebraic equations</atitle><jtitle>arXiv.org</jtitle><date>2022-03-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We investigate an ultraweak variational formulation for (parameterized) linear differential-algebraic equations (DAEs) w.r.t. the time variable which yields an optimally stable system. This is used within a Petrov-Galerkin method to derive a certified detailed discretization which provides an approximate solution in an ultraweak setting as well as for model reduction w.r.t. time in the spirit of the Reduced Basis Method (RBM). A computable sharp error bound is derived. Numerical experiments are presented that show that this method yields a significant reduction and can be combined with well-known system theoretic methods such as Balanced Truncation to reduce the size of the DAE.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2634286887 |
source | Publicly Available Content Database |
subjects | Algebra Differential equations Galerkin method Mathematical analysis Model reduction Parameterization Systems theory |
title | An ultraweak variational method for parameterized linear differential-algebraic equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20ultraweak%20variational%20method%20for%20parameterized%20linear%20differential-algebraic%20equations&rft.jtitle=arXiv.org&rft.au=Beurer,%20Emil&rft.date=2022-03-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2634286887%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26342868873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634286887&rft_id=info:pmid/&rfr_iscdi=true |