Loading…

Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip

The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2022-03, Vol.22 (5), p.954-963
Main Authors: Aufrecht, Jayde, Khalid, Muneeba, Walton, Courtney L, Tate, Kylee, Cahill, John F, Retterer, Scott T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73
cites cdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73
container_end_page 963
container_issue 5
container_start_page 954
container_title Lab on a chip
container_volume 22
creator Aufrecht, Jayde
Khalid, Muneeba
Walton, Courtney L
Tate, Kylee
Cahill, John F
Retterer, Scott T
description The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon , and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry. A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.
doi_str_mv 10.1039/d1lc00705j
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2634534430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634534430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</originalsourceid><addsrcrecordid>eNpd0c9P2zAUB3ALMa3Q7cKdKRoXNCnDP2PniAqsoGq7wDlyX2zFVRtntqNt_PW4tHQSB-tZ7330JPuL0BnB3wlm9VVL1oCxxGJ1hE4Il6zERNXHh3stJ-g0xhXGRPBKfUQTJrCqaS1O0M-5T3HIp_C2CN6n0vwdW9MWeuN6X2hwbSx0MAUEo1Pu_3Gpc32hi9C5Zx-HzgRT-r7UJXRu-IQ-WL2O5vO-TtHT3e3jbF4ufv24n10vSuAYpxKqquISZAVLpoC0AJZhhe1SsVbTmguOCTWWKiKllbS1iuYur_SSCgFWsin6utvrY3JNBJcMdOD73kBqiOJU8C263KEh-N-jianZuAhmvda98WNsaEWZqhklVaYX7-jKj6HPT8iKccE4ZzirbzsFwccYjG2G4DY6_GsIbrZRNDdkMXuN4iHjL_uV43Jj2gN9-_sMzncgRDhM_2fJXgBeTYtd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634534430</pqid></control><display><type>article</type><title>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Aufrecht, Jayde ; Khalid, Muneeba ; Walton, Courtney L ; Tate, Kylee ; Cahill, John F ; Retterer, Scott T</creator><creatorcontrib>Aufrecht, Jayde ; Khalid, Muneeba ; Walton, Courtney L ; Tate, Kylee ; Cahill, John F ; Retterer, Scott T ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon , and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry. A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.</description><identifier>ISSN: 1473-0197</identifier><identifier>ISSN: 1473-0189</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d1lc00705j</identifier><identifier>PMID: 35089295</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amino acids ; Amino Acids - analysis ; Amino Acids - metabolism ; BASIC BIOLOGICAL SCIENCES ; Carbon compounds ; Complexity ; Ecosystem ; Exudation ; Lab-On-A-Chip Devices ; Mass spectrometry ; Microfluidics ; Microorganisms ; Molecular structure ; Plant Roots ; Rhizosphere ; Soil - chemistry ; Soil Microbiology ; Soil structure</subject><ispartof>Lab on a chip, 2022-03, Vol.22 (5), p.954-963</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</citedby><cites>FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</cites><orcidid>0000-0002-7102-980X ; 0000-0001-8534-1979 ; 0000000185341979 ; 000000027102980X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35089295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1842547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aufrecht, Jayde</creatorcontrib><creatorcontrib>Khalid, Muneeba</creatorcontrib><creatorcontrib>Walton, Courtney L</creatorcontrib><creatorcontrib>Tate, Kylee</creatorcontrib><creatorcontrib>Cahill, John F</creatorcontrib><creatorcontrib>Retterer, Scott T</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon , and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry. A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.</description><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Amino Acids - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Carbon compounds</subject><subject>Complexity</subject><subject>Ecosystem</subject><subject>Exudation</subject><subject>Lab-On-A-Chip Devices</subject><subject>Mass spectrometry</subject><subject>Microfluidics</subject><subject>Microorganisms</subject><subject>Molecular structure</subject><subject>Plant Roots</subject><subject>Rhizosphere</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soil structure</subject><issn>1473-0197</issn><issn>1473-0189</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c9P2zAUB3ALMa3Q7cKdKRoXNCnDP2PniAqsoGq7wDlyX2zFVRtntqNt_PW4tHQSB-tZ7330JPuL0BnB3wlm9VVL1oCxxGJ1hE4Il6zERNXHh3stJ-g0xhXGRPBKfUQTJrCqaS1O0M-5T3HIp_C2CN6n0vwdW9MWeuN6X2hwbSx0MAUEo1Pu_3Gpc32hi9C5Zx-HzgRT-r7UJXRu-IQ-WL2O5vO-TtHT3e3jbF4ufv24n10vSuAYpxKqquISZAVLpoC0AJZhhe1SsVbTmguOCTWWKiKllbS1iuYur_SSCgFWsin6utvrY3JNBJcMdOD73kBqiOJU8C263KEh-N-jianZuAhmvda98WNsaEWZqhklVaYX7-jKj6HPT8iKccE4ZzirbzsFwccYjG2G4DY6_GsIbrZRNDdkMXuN4iHjL_uV43Jj2gN9-_sMzncgRDhM_2fJXgBeTYtd</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Aufrecht, Jayde</creator><creator>Khalid, Muneeba</creator><creator>Walton, Courtney L</creator><creator>Tate, Kylee</creator><creator>Cahill, John F</creator><creator>Retterer, Scott T</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7102-980X</orcidid><orcidid>https://orcid.org/0000-0001-8534-1979</orcidid><orcidid>https://orcid.org/0000000185341979</orcidid><orcidid>https://orcid.org/000000027102980X</orcidid></search><sort><creationdate>20220301</creationdate><title>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</title><author>Aufrecht, Jayde ; Khalid, Muneeba ; Walton, Courtney L ; Tate, Kylee ; Cahill, John F ; Retterer, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Amino Acids - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Carbon compounds</topic><topic>Complexity</topic><topic>Ecosystem</topic><topic>Exudation</topic><topic>Lab-On-A-Chip Devices</topic><topic>Mass spectrometry</topic><topic>Microfluidics</topic><topic>Microorganisms</topic><topic>Molecular structure</topic><topic>Plant Roots</topic><topic>Rhizosphere</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soil structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aufrecht, Jayde</creatorcontrib><creatorcontrib>Khalid, Muneeba</creatorcontrib><creatorcontrib>Walton, Courtney L</creatorcontrib><creatorcontrib>Tate, Kylee</creatorcontrib><creatorcontrib>Cahill, John F</creatorcontrib><creatorcontrib>Retterer, Scott T</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aufrecht, Jayde</au><au>Khalid, Muneeba</au><au>Walton, Courtney L</au><au>Tate, Kylee</au><au>Cahill, John F</au><au>Retterer, Scott T</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>954</spage><epage>963</epage><pages>954-963</pages><issn>1473-0197</issn><issn>1473-0189</issn><eissn>1473-0189</eissn><abstract>The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon , and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry. A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35089295</pmid><doi>10.1039/d1lc00705j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7102-980X</orcidid><orcidid>https://orcid.org/0000-0001-8534-1979</orcidid><orcidid>https://orcid.org/0000000185341979</orcidid><orcidid>https://orcid.org/000000027102980X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2022-03, Vol.22 (5), p.954-963
issn 1473-0197
1473-0189
1473-0189
language eng
recordid cdi_proquest_journals_2634534430
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Amino acids
Amino Acids - analysis
Amino Acids - metabolism
BASIC BIOLOGICAL SCIENCES
Carbon compounds
Complexity
Ecosystem
Exudation
Lab-On-A-Chip Devices
Mass spectrometry
Microfluidics
Microorganisms
Molecular structure
Plant Roots
Rhizosphere
Soil - chemistry
Soil Microbiology
Soil structure
title Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hotspots%20of%20root-exuded%20amino%20acids%20are%20created%20within%20a%20rhizosphere-on-a-chip&rft.jtitle=Lab%20on%20a%20chip&rft.au=Aufrecht,%20Jayde&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=954&rft.epage=963&rft.pages=954-963&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d1lc00705j&rft_dat=%3Cproquest_pubme%3E2634534430%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634534430&rft_id=info:pmid/35089295&rfr_iscdi=true