Loading…
Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip
The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like...
Saved in:
Published in: | Lab on a chip 2022-03, Vol.22 (5), p.954-963 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73 |
container_end_page | 963 |
container_issue | 5 |
container_start_page | 954 |
container_title | Lab on a chip |
container_volume | 22 |
creator | Aufrecht, Jayde Khalid, Muneeba Walton, Courtney L Tate, Kylee Cahill, John F Retterer, Scott T |
description | The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (
e.g.
plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to
in situ
experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of
Brachypodium distachyon
, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.
A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains. |
doi_str_mv | 10.1039/d1lc00705j |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2634534430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634534430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</originalsourceid><addsrcrecordid>eNpd0c9P2zAUB3ALMa3Q7cKdKRoXNCnDP2PniAqsoGq7wDlyX2zFVRtntqNt_PW4tHQSB-tZ7330JPuL0BnB3wlm9VVL1oCxxGJ1hE4Il6zERNXHh3stJ-g0xhXGRPBKfUQTJrCqaS1O0M-5T3HIp_C2CN6n0vwdW9MWeuN6X2hwbSx0MAUEo1Pu_3Gpc32hi9C5Zx-HzgRT-r7UJXRu-IQ-WL2O5vO-TtHT3e3jbF4ufv24n10vSuAYpxKqquISZAVLpoC0AJZhhe1SsVbTmguOCTWWKiKllbS1iuYur_SSCgFWsin6utvrY3JNBJcMdOD73kBqiOJU8C263KEh-N-jianZuAhmvda98WNsaEWZqhklVaYX7-jKj6HPT8iKccE4ZzirbzsFwccYjG2G4DY6_GsIbrZRNDdkMXuN4iHjL_uV43Jj2gN9-_sMzncgRDhM_2fJXgBeTYtd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634534430</pqid></control><display><type>article</type><title>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Aufrecht, Jayde ; Khalid, Muneeba ; Walton, Courtney L ; Tate, Kylee ; Cahill, John F ; Retterer, Scott T</creator><creatorcontrib>Aufrecht, Jayde ; Khalid, Muneeba ; Walton, Courtney L ; Tate, Kylee ; Cahill, John F ; Retterer, Scott T ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (
e.g.
plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to
in situ
experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of
Brachypodium distachyon
, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.
A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.</description><identifier>ISSN: 1473-0197</identifier><identifier>ISSN: 1473-0189</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d1lc00705j</identifier><identifier>PMID: 35089295</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amino acids ; Amino Acids - analysis ; Amino Acids - metabolism ; BASIC BIOLOGICAL SCIENCES ; Carbon compounds ; Complexity ; Ecosystem ; Exudation ; Lab-On-A-Chip Devices ; Mass spectrometry ; Microfluidics ; Microorganisms ; Molecular structure ; Plant Roots ; Rhizosphere ; Soil - chemistry ; Soil Microbiology ; Soil structure</subject><ispartof>Lab on a chip, 2022-03, Vol.22 (5), p.954-963</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</citedby><cites>FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</cites><orcidid>0000-0002-7102-980X ; 0000-0001-8534-1979 ; 0000000185341979 ; 000000027102980X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35089295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1842547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aufrecht, Jayde</creatorcontrib><creatorcontrib>Khalid, Muneeba</creatorcontrib><creatorcontrib>Walton, Courtney L</creatorcontrib><creatorcontrib>Tate, Kylee</creatorcontrib><creatorcontrib>Cahill, John F</creatorcontrib><creatorcontrib>Retterer, Scott T</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (
e.g.
plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to
in situ
experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of
Brachypodium distachyon
, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.
A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.</description><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Amino Acids - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Carbon compounds</subject><subject>Complexity</subject><subject>Ecosystem</subject><subject>Exudation</subject><subject>Lab-On-A-Chip Devices</subject><subject>Mass spectrometry</subject><subject>Microfluidics</subject><subject>Microorganisms</subject><subject>Molecular structure</subject><subject>Plant Roots</subject><subject>Rhizosphere</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soil structure</subject><issn>1473-0197</issn><issn>1473-0189</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c9P2zAUB3ALMa3Q7cKdKRoXNCnDP2PniAqsoGq7wDlyX2zFVRtntqNt_PW4tHQSB-tZ7330JPuL0BnB3wlm9VVL1oCxxGJ1hE4Il6zERNXHh3stJ-g0xhXGRPBKfUQTJrCqaS1O0M-5T3HIp_C2CN6n0vwdW9MWeuN6X2hwbSx0MAUEo1Pu_3Gpc32hi9C5Zx-HzgRT-r7UJXRu-IQ-WL2O5vO-TtHT3e3jbF4ufv24n10vSuAYpxKqquISZAVLpoC0AJZhhe1SsVbTmguOCTWWKiKllbS1iuYur_SSCgFWsin6utvrY3JNBJcMdOD73kBqiOJU8C263KEh-N-jianZuAhmvda98WNsaEWZqhklVaYX7-jKj6HPT8iKccE4ZzirbzsFwccYjG2G4DY6_GsIbrZRNDdkMXuN4iHjL_uV43Jj2gN9-_sMzncgRDhM_2fJXgBeTYtd</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Aufrecht, Jayde</creator><creator>Khalid, Muneeba</creator><creator>Walton, Courtney L</creator><creator>Tate, Kylee</creator><creator>Cahill, John F</creator><creator>Retterer, Scott T</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7102-980X</orcidid><orcidid>https://orcid.org/0000-0001-8534-1979</orcidid><orcidid>https://orcid.org/0000000185341979</orcidid><orcidid>https://orcid.org/000000027102980X</orcidid></search><sort><creationdate>20220301</creationdate><title>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</title><author>Aufrecht, Jayde ; Khalid, Muneeba ; Walton, Courtney L ; Tate, Kylee ; Cahill, John F ; Retterer, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Amino Acids - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Carbon compounds</topic><topic>Complexity</topic><topic>Ecosystem</topic><topic>Exudation</topic><topic>Lab-On-A-Chip Devices</topic><topic>Mass spectrometry</topic><topic>Microfluidics</topic><topic>Microorganisms</topic><topic>Molecular structure</topic><topic>Plant Roots</topic><topic>Rhizosphere</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soil structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aufrecht, Jayde</creatorcontrib><creatorcontrib>Khalid, Muneeba</creatorcontrib><creatorcontrib>Walton, Courtney L</creatorcontrib><creatorcontrib>Tate, Kylee</creatorcontrib><creatorcontrib>Cahill, John F</creatorcontrib><creatorcontrib>Retterer, Scott T</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aufrecht, Jayde</au><au>Khalid, Muneeba</au><au>Walton, Courtney L</au><au>Tate, Kylee</au><au>Cahill, John F</au><au>Retterer, Scott T</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>954</spage><epage>963</epage><pages>954-963</pages><issn>1473-0197</issn><issn>1473-0189</issn><eissn>1473-0189</eissn><abstract>The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (
e.g.
plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to
in situ
experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of
Brachypodium distachyon
, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.
A soil-mimicking rhizosphere-on-a-chip is amenable for long-term plant growth and enables simulation of root exudate diffusion and experimental validation of carbon hotspot formation from the interaction between roots and the synthetic soil grains.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35089295</pmid><doi>10.1039/d1lc00705j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7102-980X</orcidid><orcidid>https://orcid.org/0000-0001-8534-1979</orcidid><orcidid>https://orcid.org/0000000185341979</orcidid><orcidid>https://orcid.org/000000027102980X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2022-03, Vol.22 (5), p.954-963 |
issn | 1473-0197 1473-0189 1473-0189 |
language | eng |
recordid | cdi_proquest_journals_2634534430 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Amino acids Amino Acids - analysis Amino Acids - metabolism BASIC BIOLOGICAL SCIENCES Carbon compounds Complexity Ecosystem Exudation Lab-On-A-Chip Devices Mass spectrometry Microfluidics Microorganisms Molecular structure Plant Roots Rhizosphere Soil - chemistry Soil Microbiology Soil structure |
title | Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hotspots%20of%20root-exuded%20amino%20acids%20are%20created%20within%20a%20rhizosphere-on-a-chip&rft.jtitle=Lab%20on%20a%20chip&rft.au=Aufrecht,%20Jayde&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=954&rft.epage=963&rft.pages=954-963&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d1lc00705j&rft_dat=%3Cproquest_pubme%3E2634534430%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-c66647c76cb38c1dccf3080fb83da29454012ef28177f72df8229446ab255cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634534430&rft_id=info:pmid/35089295&rfr_iscdi=true |