Loading…

Dynamic simulation of airborne pollutant concentrations associated with the effect of climate change in Batu Muda region, Malaysia

Air pollution has been a rising concern of the 21st due to its effects to public health. Air Monitoring Stations are state-of-the-art equipment used to measure airborne pollutants concentration i.e. carbon monoxide, nitrogen oxide, sulphur dioxide, particulate matter (PM 10 ) and ozone (O 3 ), as we...

Full description

Saved in:
Bibliographic Details
Published in:Modeling earth systems and environment 2022-03, Vol.8 (1), p.323-338
Main Authors: Lee, Cedric Lemuel, Jie, Wong Yong, Arumugasamy, Senthil Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air pollution has been a rising concern of the 21st due to its effects to public health. Air Monitoring Stations are state-of-the-art equipment used to measure airborne pollutants concentration i.e. carbon monoxide, nitrogen oxide, sulphur dioxide, particulate matter (PM 10 ) and ozone (O 3 ), as well as the meteorological parameters (i.e. ambient air temperature, relative humidity, wind speed and wind direction). Effects of climate change will affect the ambient temperature and humidity, which may induce a direct effect on air quality. In light of this, feed forward artificial neural network was employed to simulate the dynamic variations of PM 10 and O 3 with relative humidity, temperature, and windspeed data being the inputs under 12 different training algorithms. Based on the results obtained, Bayesian regularization with 12 hidden neurons is the optimized network structure, with mean absolute percentage error in testing dataset of O 3 and PM 10 at 51.31% and 36.49%, respectively. The models performed better in O 3 prediction as it is a photochemical reaction where ozone concentration varies according to temperature, the effect of meteorological parameters is significant. On the other hand, PM 10 is not heavily dependent on meteorological parameters as the diversity of particulate matter components where most of its sources are dormant to changes in climate.
ISSN:2363-6203
2363-6211
DOI:10.1007/s40808-021-01107-6