Loading…
Dynamic simulation of airborne pollutant concentrations associated with the effect of climate change in Batu Muda region, Malaysia
Air pollution has been a rising concern of the 21st due to its effects to public health. Air Monitoring Stations are state-of-the-art equipment used to measure airborne pollutants concentration i.e. carbon monoxide, nitrogen oxide, sulphur dioxide, particulate matter (PM 10 ) and ozone (O 3 ), as we...
Saved in:
Published in: | Modeling earth systems and environment 2022-03, Vol.8 (1), p.323-338 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Air pollution has been a rising concern of the 21st due to its effects to public health. Air Monitoring Stations are state-of-the-art equipment used to measure airborne pollutants concentration i.e. carbon monoxide, nitrogen oxide, sulphur dioxide, particulate matter (PM
10
) and ozone (O
3
), as well as the meteorological parameters (i.e. ambient air temperature, relative humidity, wind speed and wind direction). Effects of climate change will affect the ambient temperature and humidity, which may induce a direct effect on air quality. In light of this, feed forward artificial neural network was employed to simulate the dynamic variations of PM
10
and O
3
with relative humidity, temperature, and windspeed data being the inputs under 12 different training algorithms. Based on the results obtained, Bayesian regularization with 12 hidden neurons is the optimized network structure, with mean absolute percentage error in testing dataset of O
3
and PM
10
at 51.31% and 36.49%, respectively. The models performed better in O
3
prediction as it is a photochemical reaction where ozone concentration varies according to temperature, the effect of meteorological parameters is significant. On the other hand, PM
10
is not heavily dependent on meteorological parameters as the diversity of particulate matter components where most of its sources are dormant to changes in climate. |
---|---|
ISSN: | 2363-6203 2363-6211 |
DOI: | 10.1007/s40808-021-01107-6 |