Loading…
Maximal dispersion of adaptive random walks
Maximum entropy random walks (MERWs) are maximally dispersing and play a key role in optimizing information spreading in various contexts. However, building MERWs comes at the cost of knowing beforehand the global structure of the network, a requirement that makes them totally inadequate in real cas...
Saved in:
Published in: | arXiv.org 2023-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gabriele Di Bona Leonardo Di Gaetano Latora, Vito Coghi, Francesco |
description | Maximum entropy random walks (MERWs) are maximally dispersing and play a key role in optimizing information spreading in various contexts. However, building MERWs comes at the cost of knowing beforehand the global structure of the network, a requirement that makes them totally inadequate in real case scenarios. Here, we propose an adaptive random walk (ARW), which instead maximizes dispersion by updating its transition rule on the local information collected while exploring the network. We show how to derive ARW via a large-deviation representation of MERW and study its dynamics on synthetic and real world networks. |
doi_str_mv | 10.48550/arxiv.2202.13923 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2634671836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634671836</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-50fc8282ed648bc1cf1888b8bf4e455ed5ff5753176caec5375dc897ea747b4c3</originalsourceid><addsrcrecordid>eNotzctKw0AUgOFBECy1D-Au0KUkzpwzZ-ZkKcVLoeKm-zKZC6RNk5hpax9fQVf_7vuFeFCy0kwkn9x0bS8VgIRKYQ14I2aAqErWAHdikfNeSgnGAhHOxOOHu7ZH1xWhzWOccjv0xZAKF9x4ai-xmFwfhmPx7bpDvhe3yXU5Lv47F9vXl-3qvdx8vq1Xz5vS1YQlyeQZGGIwmhuvfFLM3HCTdNREMVBKZAmVNd5FT2gpeK5tdFbbRnuci-UfO07D1znm024_nKf-97gDg9pYxWjwB63bQ3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634671836</pqid></control><display><type>article</type><title>Maximal dispersion of adaptive random walks</title><source>Publicly Available Content (ProQuest)</source><creator>Gabriele Di Bona ; Leonardo Di Gaetano ; Latora, Vito ; Coghi, Francesco</creator><creatorcontrib>Gabriele Di Bona ; Leonardo Di Gaetano ; Latora, Vito ; Coghi, Francesco</creatorcontrib><description>Maximum entropy random walks (MERWs) are maximally dispersing and play a key role in optimizing information spreading in various contexts. However, building MERWs comes at the cost of knowing beforehand the global structure of the network, a requirement that makes them totally inadequate in real case scenarios. Here, we propose an adaptive random walk (ARW), which instead maximizes dispersion by updating its transition rule on the local information collected while exploring the network. We show how to derive ARW via a large-deviation representation of MERW and study its dynamics on synthetic and real world networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2202.13923</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dispersion ; Maximum entropy ; Random walk</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2634671836?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gabriele Di Bona</creatorcontrib><creatorcontrib>Leonardo Di Gaetano</creatorcontrib><creatorcontrib>Latora, Vito</creatorcontrib><creatorcontrib>Coghi, Francesco</creatorcontrib><title>Maximal dispersion of adaptive random walks</title><title>arXiv.org</title><description>Maximum entropy random walks (MERWs) are maximally dispersing and play a key role in optimizing information spreading in various contexts. However, building MERWs comes at the cost of knowing beforehand the global structure of the network, a requirement that makes them totally inadequate in real case scenarios. Here, we propose an adaptive random walk (ARW), which instead maximizes dispersion by updating its transition rule on the local information collected while exploring the network. We show how to derive ARW via a large-deviation representation of MERW and study its dynamics on synthetic and real world networks.</description><subject>Dispersion</subject><subject>Maximum entropy</subject><subject>Random walk</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKw0AUgOFBECy1D-Au0KUkzpwzZ-ZkKcVLoeKm-zKZC6RNk5hpax9fQVf_7vuFeFCy0kwkn9x0bS8VgIRKYQ14I2aAqErWAHdikfNeSgnGAhHOxOOHu7ZH1xWhzWOccjv0xZAKF9x4ai-xmFwfhmPx7bpDvhe3yXU5Lv47F9vXl-3qvdx8vq1Xz5vS1YQlyeQZGGIwmhuvfFLM3HCTdNREMVBKZAmVNd5FT2gpeK5tdFbbRnuci-UfO07D1znm024_nKf-97gDg9pYxWjwB63bQ3s</recordid><startdate>20230121</startdate><enddate>20230121</enddate><creator>Gabriele Di Bona</creator><creator>Leonardo Di Gaetano</creator><creator>Latora, Vito</creator><creator>Coghi, Francesco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230121</creationdate><title>Maximal dispersion of adaptive random walks</title><author>Gabriele Di Bona ; Leonardo Di Gaetano ; Latora, Vito ; Coghi, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-50fc8282ed648bc1cf1888b8bf4e455ed5ff5753176caec5375dc897ea747b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dispersion</topic><topic>Maximum entropy</topic><topic>Random walk</topic><toplevel>online_resources</toplevel><creatorcontrib>Gabriele Di Bona</creatorcontrib><creatorcontrib>Leonardo Di Gaetano</creatorcontrib><creatorcontrib>Latora, Vito</creatorcontrib><creatorcontrib>Coghi, Francesco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriele Di Bona</au><au>Leonardo Di Gaetano</au><au>Latora, Vito</au><au>Coghi, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal dispersion of adaptive random walks</atitle><jtitle>arXiv.org</jtitle><date>2023-01-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Maximum entropy random walks (MERWs) are maximally dispersing and play a key role in optimizing information spreading in various contexts. However, building MERWs comes at the cost of knowing beforehand the global structure of the network, a requirement that makes them totally inadequate in real case scenarios. Here, we propose an adaptive random walk (ARW), which instead maximizes dispersion by updating its transition rule on the local information collected while exploring the network. We show how to derive ARW via a large-deviation representation of MERW and study its dynamics on synthetic and real world networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2202.13923</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2634671836 |
source | Publicly Available Content (ProQuest) |
subjects | Dispersion Maximum entropy Random walk |
title | Maximal dispersion of adaptive random walks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A39%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20dispersion%20of%20adaptive%20random%20walks&rft.jtitle=arXiv.org&rft.au=Gabriele%20Di%20Bona&rft.date=2023-01-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2202.13923&rft_dat=%3Cproquest%3E2634671836%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-50fc8282ed648bc1cf1888b8bf4e455ed5ff5753176caec5375dc897ea747b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634671836&rft_id=info:pmid/&rfr_iscdi=true |