Loading…
Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials
Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe deca...
Saved in:
Published in: | Advanced functional materials 2022-03, Vol.32 (10), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Sun, Jianming Sheng, Chuanchao Cao, Xin Wang, Pengfei He, Ping Yang, Huijun Chang, Zhi Yue, Xiyan Zhou, Haoshen |
description | Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries.
The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries. |
doi_str_mv | 10.1002/adfm.202110295 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634767811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634767811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUXETBWr16XvCcum_z2WNJrQophVbBW9hs3rZb0iTuJtTc_An-Rn-JKZV69DTzmJn3eEPILbARMMbvRa52I844AONj_4wMIIDAcRmPzk8c3i7JlbVbxiAMXW9A9ku0jRG61OWaLj66NZZ0iQUKi1SUOV21dW3Q2oO8akwrm9YgnWrbVKbRVUl1SVe9WOD351dsOtuIgia6H5ZabmgiOjSY01g0mypHOhcNGi0Ke00uVA9484tD8jp7eImfnGTx-BxPEke6EPoOclCBciPJxx5gxnMeIuspDzjLUIR5JjKhJKDny8BF4QcZ8Ej6kQLlKyXdIbk77q1N9d72v6bbqjVlfzLlgeuFQRgB9K7R0SVNZa1BldZG74TpUmDpodz0UG56KrcPjI-BvS6w-8edTqaz-V_2B1txgks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634767811</pqid></control><display><type>article</type><title>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sun, Jianming ; Sheng, Chuanchao ; Cao, Xin ; Wang, Pengfei ; He, Ping ; Yang, Huijun ; Chang, Zhi ; Yue, Xiyan ; Zhou, Haoshen</creator><creatorcontrib>Sun, Jianming ; Sheng, Chuanchao ; Cao, Xin ; Wang, Pengfei ; He, Ping ; Yang, Huijun ; Chang, Zhi ; Yue, Xiyan ; Zhou, Haoshen</creatorcontrib><description>Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries.
The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110295</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Crystal morphology ; Crystal structure ; cycle performance ; Cycles ; Distortion ; Electrode materials ; Flux density ; Industrial applications ; Lithium-ion batteries ; Li‐rich cathode materials ; Materials science ; Morphology ; Oxygen ; oxygen release ; Phase transitions ; Polycrystals ; Rechargeable batteries ; Redox reactions ; Single crystals ; single‐crystal ; Structural stability ; structure distortion ; Superlattices</subject><ispartof>Advanced functional materials, 2022-03, Vol.32 (10), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</citedby><cites>FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</cites><orcidid>0000-0001-8112-3739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jianming</creatorcontrib><creatorcontrib>Sheng, Chuanchao</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>He, Ping</creatorcontrib><creatorcontrib>Yang, Huijun</creatorcontrib><creatorcontrib>Chang, Zhi</creatorcontrib><creatorcontrib>Yue, Xiyan</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><title>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</title><title>Advanced functional materials</title><description>Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries.
The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.</description><subject>Cathodes</subject><subject>Crystal morphology</subject><subject>Crystal structure</subject><subject>cycle performance</subject><subject>Cycles</subject><subject>Distortion</subject><subject>Electrode materials</subject><subject>Flux density</subject><subject>Industrial applications</subject><subject>Lithium-ion batteries</subject><subject>Li‐rich cathode materials</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Oxygen</subject><subject>oxygen release</subject><subject>Phase transitions</subject><subject>Polycrystals</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Single crystals</subject><subject>single‐crystal</subject><subject>Structural stability</subject><subject>structure distortion</subject><subject>Superlattices</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AUXETBWr16XvCcum_z2WNJrQophVbBW9hs3rZb0iTuJtTc_An-Rn-JKZV69DTzmJn3eEPILbARMMbvRa52I844AONj_4wMIIDAcRmPzk8c3i7JlbVbxiAMXW9A9ku0jRG61OWaLj66NZZ0iQUKi1SUOV21dW3Q2oO8akwrm9YgnWrbVKbRVUl1SVe9WOD351dsOtuIgia6H5ZabmgiOjSY01g0mypHOhcNGi0Ke00uVA9484tD8jp7eImfnGTx-BxPEke6EPoOclCBciPJxx5gxnMeIuspDzjLUIR5JjKhJKDny8BF4QcZ8Ej6kQLlKyXdIbk77q1N9d72v6bbqjVlfzLlgeuFQRgB9K7R0SVNZa1BldZG74TpUmDpodz0UG56KrcPjI-BvS6w-8edTqaz-V_2B1txgks</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sun, Jianming</creator><creator>Sheng, Chuanchao</creator><creator>Cao, Xin</creator><creator>Wang, Pengfei</creator><creator>He, Ping</creator><creator>Yang, Huijun</creator><creator>Chang, Zhi</creator><creator>Yue, Xiyan</creator><creator>Zhou, Haoshen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8112-3739</orcidid></search><sort><creationdate>20220301</creationdate><title>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</title><author>Sun, Jianming ; Sheng, Chuanchao ; Cao, Xin ; Wang, Pengfei ; He, Ping ; Yang, Huijun ; Chang, Zhi ; Yue, Xiyan ; Zhou, Haoshen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Crystal morphology</topic><topic>Crystal structure</topic><topic>cycle performance</topic><topic>Cycles</topic><topic>Distortion</topic><topic>Electrode materials</topic><topic>Flux density</topic><topic>Industrial applications</topic><topic>Lithium-ion batteries</topic><topic>Li‐rich cathode materials</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Oxygen</topic><topic>oxygen release</topic><topic>Phase transitions</topic><topic>Polycrystals</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Single crystals</topic><topic>single‐crystal</topic><topic>Structural stability</topic><topic>structure distortion</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianming</creatorcontrib><creatorcontrib>Sheng, Chuanchao</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>He, Ping</creatorcontrib><creatorcontrib>Yang, Huijun</creatorcontrib><creatorcontrib>Chang, Zhi</creatorcontrib><creatorcontrib>Yue, Xiyan</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianming</au><au>Sheng, Chuanchao</au><au>Cao, Xin</au><au>Wang, Pengfei</au><au>He, Ping</au><au>Yang, Huijun</au><au>Chang, Zhi</au><au>Yue, Xiyan</au><au>Zhou, Haoshen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</atitle><jtitle>Advanced functional materials</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>32</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries.
The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110295</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8112-3739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-03, Vol.32 (10), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2634767811 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Cathodes Crystal morphology Crystal structure cycle performance Cycles Distortion Electrode materials Flux density Industrial applications Lithium-ion batteries Li‐rich cathode materials Materials science Morphology Oxygen oxygen release Phase transitions Polycrystals Rechargeable batteries Redox reactions Single crystals single‐crystal Structural stability structure distortion Superlattices |
title | Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restraining%20Oxygen%20Release%20and%20Suppressing%20Structure%20Distortion%20in%20Single%E2%80%90Crystal%20Li%E2%80%90Rich%20Layered%20Cathode%20Materials&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20Jianming&rft.date=2022-03-01&rft.volume=32&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110295&rft_dat=%3Cproquest_cross%3E2634767811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634767811&rft_id=info:pmid/&rfr_iscdi=true |