Loading…

Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials

Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe deca...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-03, Vol.32 (10), p.n/a
Main Authors: Sun, Jianming, Sheng, Chuanchao, Cao, Xin, Wang, Pengfei, He, Ping, Yang, Huijun, Chang, Zhi, Yue, Xiyan, Zhou, Haoshen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3
cites cdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced functional materials
container_volume 32
creator Sun, Jianming
Sheng, Chuanchao
Cao, Xin
Wang, Pengfei
He, Ping
Yang, Huijun
Chang, Zhi
Yue, Xiyan
Zhou, Haoshen
description Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries. The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.
doi_str_mv 10.1002/adfm.202110295
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634767811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634767811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUXETBWr16XvCcum_z2WNJrQophVbBW9hs3rZb0iTuJtTc_An-Rn-JKZV69DTzmJn3eEPILbARMMbvRa52I844AONj_4wMIIDAcRmPzk8c3i7JlbVbxiAMXW9A9ku0jRG61OWaLj66NZZ0iQUKi1SUOV21dW3Q2oO8akwrm9YgnWrbVKbRVUl1SVe9WOD351dsOtuIgia6H5ZabmgiOjSY01g0mypHOhcNGi0Ke00uVA9484tD8jp7eImfnGTx-BxPEke6EPoOclCBciPJxx5gxnMeIuspDzjLUIR5JjKhJKDny8BF4QcZ8Ej6kQLlKyXdIbk77q1N9d72v6bbqjVlfzLlgeuFQRgB9K7R0SVNZa1BldZG74TpUmDpodz0UG56KrcPjI-BvS6w-8edTqaz-V_2B1txgks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634767811</pqid></control><display><type>article</type><title>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, Jianming ; Sheng, Chuanchao ; Cao, Xin ; Wang, Pengfei ; He, Ping ; Yang, Huijun ; Chang, Zhi ; Yue, Xiyan ; Zhou, Haoshen</creator><creatorcontrib>Sun, Jianming ; Sheng, Chuanchao ; Cao, Xin ; Wang, Pengfei ; He, Ping ; Yang, Huijun ; Chang, Zhi ; Yue, Xiyan ; Zhou, Haoshen</creatorcontrib><description>Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries. The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110295</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Crystal morphology ; Crystal structure ; cycle performance ; Cycles ; Distortion ; Electrode materials ; Flux density ; Industrial applications ; Lithium-ion batteries ; Li‐rich cathode materials ; Materials science ; Morphology ; Oxygen ; oxygen release ; Phase transitions ; Polycrystals ; Rechargeable batteries ; Redox reactions ; Single crystals ; single‐crystal ; Structural stability ; structure distortion ; Superlattices</subject><ispartof>Advanced functional materials, 2022-03, Vol.32 (10), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</citedby><cites>FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</cites><orcidid>0000-0001-8112-3739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jianming</creatorcontrib><creatorcontrib>Sheng, Chuanchao</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>He, Ping</creatorcontrib><creatorcontrib>Yang, Huijun</creatorcontrib><creatorcontrib>Chang, Zhi</creatorcontrib><creatorcontrib>Yue, Xiyan</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><title>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</title><title>Advanced functional materials</title><description>Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries. The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.</description><subject>Cathodes</subject><subject>Crystal morphology</subject><subject>Crystal structure</subject><subject>cycle performance</subject><subject>Cycles</subject><subject>Distortion</subject><subject>Electrode materials</subject><subject>Flux density</subject><subject>Industrial applications</subject><subject>Lithium-ion batteries</subject><subject>Li‐rich cathode materials</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Oxygen</subject><subject>oxygen release</subject><subject>Phase transitions</subject><subject>Polycrystals</subject><subject>Rechargeable batteries</subject><subject>Redox reactions</subject><subject>Single crystals</subject><subject>single‐crystal</subject><subject>Structural stability</subject><subject>structure distortion</subject><subject>Superlattices</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AUXETBWr16XvCcum_z2WNJrQophVbBW9hs3rZb0iTuJtTc_An-Rn-JKZV69DTzmJn3eEPILbARMMbvRa52I844AONj_4wMIIDAcRmPzk8c3i7JlbVbxiAMXW9A9ku0jRG61OWaLj66NZZ0iQUKi1SUOV21dW3Q2oO8akwrm9YgnWrbVKbRVUl1SVe9WOD351dsOtuIgia6H5ZabmgiOjSY01g0mypHOhcNGi0Ke00uVA9484tD8jp7eImfnGTx-BxPEke6EPoOclCBciPJxx5gxnMeIuspDzjLUIR5JjKhJKDny8BF4QcZ8Ej6kQLlKyXdIbk77q1N9d72v6bbqjVlfzLlgeuFQRgB9K7R0SVNZa1BldZG74TpUmDpodz0UG56KrcPjI-BvS6w-8edTqaz-V_2B1txgks</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sun, Jianming</creator><creator>Sheng, Chuanchao</creator><creator>Cao, Xin</creator><creator>Wang, Pengfei</creator><creator>He, Ping</creator><creator>Yang, Huijun</creator><creator>Chang, Zhi</creator><creator>Yue, Xiyan</creator><creator>Zhou, Haoshen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8112-3739</orcidid></search><sort><creationdate>20220301</creationdate><title>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</title><author>Sun, Jianming ; Sheng, Chuanchao ; Cao, Xin ; Wang, Pengfei ; He, Ping ; Yang, Huijun ; Chang, Zhi ; Yue, Xiyan ; Zhou, Haoshen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Crystal morphology</topic><topic>Crystal structure</topic><topic>cycle performance</topic><topic>Cycles</topic><topic>Distortion</topic><topic>Electrode materials</topic><topic>Flux density</topic><topic>Industrial applications</topic><topic>Lithium-ion batteries</topic><topic>Li‐rich cathode materials</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Oxygen</topic><topic>oxygen release</topic><topic>Phase transitions</topic><topic>Polycrystals</topic><topic>Rechargeable batteries</topic><topic>Redox reactions</topic><topic>Single crystals</topic><topic>single‐crystal</topic><topic>Structural stability</topic><topic>structure distortion</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianming</creatorcontrib><creatorcontrib>Sheng, Chuanchao</creatorcontrib><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>He, Ping</creatorcontrib><creatorcontrib>Yang, Huijun</creatorcontrib><creatorcontrib>Chang, Zhi</creatorcontrib><creatorcontrib>Yue, Xiyan</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianming</au><au>Sheng, Chuanchao</au><au>Cao, Xin</au><au>Wang, Pengfei</au><au>He, Ping</au><au>Yang, Huijun</au><au>Chang, Zhi</au><au>Yue, Xiyan</au><au>Zhou, Haoshen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials</atitle><jtitle>Advanced functional materials</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>32</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Li‐rich oxides can be regarded as the next‐generation cathode materials for high‐energy‐density Li‐ion batteries since additional oxygen redox activities greatly increase output energy density. However, the oxygen loss and structural distortion induce low initial coulombic efficiency and severe decay of cycle performance, further hindering their industrial applications. Herein, the representative layered Li‐rich cathode material, Li1.2Ni0.2Mn0.6O2, is endowed with novel single‐crystal morphology. In comparison to its polycrystal counterpart, not only can serious oxygen release be effectively restrained during the first oxygen activation process, but also the layered/spinel phase transition can be well suppressed upon cycling. Moreover, the single‐crystal cathode exhibits the limited volume change and persistent presence of superlattice peaks upon Li+ (de)intercalation processes, resulting in enhanced structural stability with absence of crack generation and successive utilization of oxygen redox reaction during long‐term cycling. Benefiting from these unique features, the single‐crystal Li‐rich electrode not only yields a high reversible capacity of 257 mAh g−1, but also achieves excellent cycling performance with 92% capacity retention after 200 cycles. These findings demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize high‐energy density and long‐life Li‐ion batteries. The electrochemical behaviors, structural evolution, and oxygen activities of polycrystal and single‐crystal Li‐rich electrodes are comprehensively compared, which effectively demonstrate that the morphology design of single crystals can be regarded as an effective strategy to realize next‐generation high‐energy‐density Li‐ion batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110295</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8112-3739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-03, Vol.32 (10), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2634767811
source Wiley-Blackwell Read & Publish Collection
subjects Cathodes
Crystal morphology
Crystal structure
cycle performance
Cycles
Distortion
Electrode materials
Flux density
Industrial applications
Lithium-ion batteries
Li‐rich cathode materials
Materials science
Morphology
Oxygen
oxygen release
Phase transitions
Polycrystals
Rechargeable batteries
Redox reactions
Single crystals
single‐crystal
Structural stability
structure distortion
Superlattices
title Restraining Oxygen Release and Suppressing Structure Distortion in Single‐Crystal Li‐Rich Layered Cathode Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restraining%20Oxygen%20Release%20and%20Suppressing%20Structure%20Distortion%20in%20Single%E2%80%90Crystal%20Li%E2%80%90Rich%20Layered%20Cathode%20Materials&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20Jianming&rft.date=2022-03-01&rft.volume=32&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110295&rft_dat=%3Cproquest_cross%3E2634767811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3175-e21f6f38c2941eb2d27e09412620bea7dbabafc1e45c63ea56b128c58f1f5ffc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2634767811&rft_id=info:pmid/&rfr_iscdi=true