Loading…
An Optimization-Based UWB-IMU Fusion Framework for UGV
UWB and IMU fusion positioning methods have been widely concerned for its high accuracy and robustness in GNSS-denied environment. However, most of the existing methods are stay under the Markov assumption and ignore the credible estimation of the yaw angle. In this paper, we propose a novel tightly...
Saved in:
Published in: | IEEE sensors journal 2022-03, Vol.22 (5), p.4369-4377 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933 |
container_end_page | 4377 |
container_issue | 5 |
container_start_page | 4369 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Zheng, Shuaikang Li, Zhitian Liu, Yunfei Zhang, Haifeng Zou, Xudong |
description | UWB and IMU fusion positioning methods have been widely concerned for its high accuracy and robustness in GNSS-denied environment. However, most of the existing methods are stay under the Markov assumption and ignore the credible estimation of the yaw angle. In this paper, we propose a novel tightly-coupled IMU and multiple UWB tags fusion framework based on a graph optimization model that is able to provide high precision positioning and attitude determination service, which provides a new technical approach for the practical application of UWB and IMU fusion. A relative rotation and motion state initialization algorithm is designed and presented, which solves the problems that IMU installation direction is difficult to measure and the initial state is not stationary in practical application. Simulation experiments shows the impact of UWB tags distribution distance and IMU noise parameters on system performance, which provides design reference for practical applications. Finally, the real-site experiment proves the positioning RMSE of 4 cm based on our fusion solution and these simulation evidences, which confirms the great performance of our fusion solution. |
doi_str_mv | 10.1109/JSEN.2022.3144660 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635044977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9686716</ieee_id><sourcerecordid>2635044977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayXeObWlrpdqDrnoLaZKFrbZbky2iv95dWjzNy_C8M_AgdA14AID13cPz5GlAMCEDCowJgU9QDzhXOUimTrtMcc6ofD9HFymtMQYtuewhMdxmy11Tbapf21T1Nh_ZFHxWvI3y-WORTfepXWbTaDfhu44fWVnHrJi9XqKz0n6mcHWcfVRMJy_j-3yxnM3Hw0XuiKZNbqkUgnrtSYDgLfMMPHZYaYetXqnSCWVXjgsVAnBVCmeBeliBIyWXUlPaR7eHu7tYf-1Dasy63sdt-9IQQTlmTEvZUnCgXKxTiqE0u1htbPwxgE2nx3R6TKfHHPW0nZtDpwoh_PNaKCFB0D8Mul8a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044977</pqid></control><display><type>article</type><title>An Optimization-Based UWB-IMU Fusion Framework for UGV</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zheng, Shuaikang ; Li, Zhitian ; Liu, Yunfei ; Zhang, Haifeng ; Zou, Xudong</creator><creatorcontrib>Zheng, Shuaikang ; Li, Zhitian ; Liu, Yunfei ; Zhang, Haifeng ; Zou, Xudong</creatorcontrib><description>UWB and IMU fusion positioning methods have been widely concerned for its high accuracy and robustness in GNSS-denied environment. However, most of the existing methods are stay under the Markov assumption and ignore the credible estimation of the yaw angle. In this paper, we propose a novel tightly-coupled IMU and multiple UWB tags fusion framework based on a graph optimization model that is able to provide high precision positioning and attitude determination service, which provides a new technical approach for the practical application of UWB and IMU fusion. A relative rotation and motion state initialization algorithm is designed and presented, which solves the problems that IMU installation direction is difficult to measure and the initial state is not stationary in practical application. Simulation experiments shows the impact of UWB tags distribution distance and IMU noise parameters on system performance, which provides design reference for practical applications. Finally, the real-site experiment proves the positioning RMSE of 4 cm based on our fusion solution and these simulation evidences, which confirms the great performance of our fusion solution.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3144660</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Distance measurement ; fusion positioning ; graph optimization ; IMU ; Optimization ; Position measurement ; Real-time systems ; Sensor fusion ; Sensors ; Tags ; UWB ; Velocity measurement ; Yaw</subject><ispartof>IEEE sensors journal, 2022-03, Vol.22 (5), p.4369-4377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933</citedby><cites>FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933</cites><orcidid>0000-0002-1346-4870 ; 0000-0003-2077-9253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9686716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Zheng, Shuaikang</creatorcontrib><creatorcontrib>Li, Zhitian</creatorcontrib><creatorcontrib>Liu, Yunfei</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Zou, Xudong</creatorcontrib><title>An Optimization-Based UWB-IMU Fusion Framework for UGV</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>UWB and IMU fusion positioning methods have been widely concerned for its high accuracy and robustness in GNSS-denied environment. However, most of the existing methods are stay under the Markov assumption and ignore the credible estimation of the yaw angle. In this paper, we propose a novel tightly-coupled IMU and multiple UWB tags fusion framework based on a graph optimization model that is able to provide high precision positioning and attitude determination service, which provides a new technical approach for the practical application of UWB and IMU fusion. A relative rotation and motion state initialization algorithm is designed and presented, which solves the problems that IMU installation direction is difficult to measure and the initial state is not stationary in practical application. Simulation experiments shows the impact of UWB tags distribution distance and IMU noise parameters on system performance, which provides design reference for practical applications. Finally, the real-site experiment proves the positioning RMSE of 4 cm based on our fusion solution and these simulation evidences, which confirms the great performance of our fusion solution.</description><subject>Algorithms</subject><subject>Distance measurement</subject><subject>fusion positioning</subject><subject>graph optimization</subject><subject>IMU</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Real-time systems</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Tags</subject><subject>UWB</subject><subject>Velocity measurement</subject><subject>Yaw</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayXeObWlrpdqDrnoLaZKFrbZbky2iv95dWjzNy_C8M_AgdA14AID13cPz5GlAMCEDCowJgU9QDzhXOUimTrtMcc6ofD9HFymtMQYtuewhMdxmy11Tbapf21T1Nh_ZFHxWvI3y-WORTfepXWbTaDfhu44fWVnHrJi9XqKz0n6mcHWcfVRMJy_j-3yxnM3Hw0XuiKZNbqkUgnrtSYDgLfMMPHZYaYetXqnSCWVXjgsVAnBVCmeBeliBIyWXUlPaR7eHu7tYf-1Dasy63sdt-9IQQTlmTEvZUnCgXKxTiqE0u1htbPwxgE2nx3R6TKfHHPW0nZtDpwoh_PNaKCFB0D8Mul8a</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zheng, Shuaikang</creator><creator>Li, Zhitian</creator><creator>Liu, Yunfei</creator><creator>Zhang, Haifeng</creator><creator>Zou, Xudong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1346-4870</orcidid><orcidid>https://orcid.org/0000-0003-2077-9253</orcidid></search><sort><creationdate>20220301</creationdate><title>An Optimization-Based UWB-IMU Fusion Framework for UGV</title><author>Zheng, Shuaikang ; Li, Zhitian ; Liu, Yunfei ; Zhang, Haifeng ; Zou, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Distance measurement</topic><topic>fusion positioning</topic><topic>graph optimization</topic><topic>IMU</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Real-time systems</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Tags</topic><topic>UWB</topic><topic>Velocity measurement</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuaikang</creatorcontrib><creatorcontrib>Li, Zhitian</creatorcontrib><creatorcontrib>Liu, Yunfei</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Zou, Xudong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuaikang</au><au>Li, Zhitian</au><au>Liu, Yunfei</au><au>Zhang, Haifeng</au><au>Zou, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimization-Based UWB-IMU Fusion Framework for UGV</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>4369</spage><epage>4377</epage><pages>4369-4377</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>UWB and IMU fusion positioning methods have been widely concerned for its high accuracy and robustness in GNSS-denied environment. However, most of the existing methods are stay under the Markov assumption and ignore the credible estimation of the yaw angle. In this paper, we propose a novel tightly-coupled IMU and multiple UWB tags fusion framework based on a graph optimization model that is able to provide high precision positioning and attitude determination service, which provides a new technical approach for the practical application of UWB and IMU fusion. A relative rotation and motion state initialization algorithm is designed and presented, which solves the problems that IMU installation direction is difficult to measure and the initial state is not stationary in practical application. Simulation experiments shows the impact of UWB tags distribution distance and IMU noise parameters on system performance, which provides design reference for practical applications. Finally, the real-site experiment proves the positioning RMSE of 4 cm based on our fusion solution and these simulation evidences, which confirms the great performance of our fusion solution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3144660</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1346-4870</orcidid><orcidid>https://orcid.org/0000-0003-2077-9253</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-03, Vol.22 (5), p.4369-4377 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2635044977 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Distance measurement fusion positioning graph optimization IMU Optimization Position measurement Real-time systems Sensor fusion Sensors Tags UWB Velocity measurement Yaw |
title | An Optimization-Based UWB-IMU Fusion Framework for UGV |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimization-Based%20UWB-IMU%20Fusion%20Framework%20for%20UGV&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zheng,%20Shuaikang&rft.date=2022-03-01&rft.volume=22&rft.issue=5&rft.spage=4369&rft.epage=4377&rft.pages=4369-4377&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3144660&rft_dat=%3Cproquest_cross%3E2635044977%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a37663d9d2e1eda4d41d0c089c0a9b8fc68abc568ee158f6ca13d1b1c2f577933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635044977&rft_id=info:pmid/&rft_ieee_id=9686716&rfr_iscdi=true |