Loading…

FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems

The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a n...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2022-03, Vol.34 (6), p.4193-4206
Main Authors: Sabir, Zulqurnain, Raja, Muhammad Asif Zahoor, Umar, Muhammad, Shoaib, Muhammad, Baleanu, Dumitru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93
cites cdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93
container_end_page 4206
container_issue 6
container_start_page 4193
container_title Neural computing & applications
container_volume 34
creator Sabir, Zulqurnain
Raja, Muhammad Asif Zahoor
Umar, Muhammad
Shoaib, Muhammad
Baleanu, Dumitru
description The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.
doi_str_mv 10.1007/s00521-021-06452-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635106788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635106788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaRWAfGcZzE7FDVQqUCi3Zv2Y5TpUrsYKeg7rgDN-QkOASpOxajr9G8_zX6CF1juMUA-Z0HoAmOYZgspUmcnKAJTgmJCdDiFE2Apb8nco4uvN8BQJoVdIK6xfPLejlb30cLJ1RfWyOa6FkftIuM3jsb-w_h2qg2vW6aeqtNHynbdvu-NtvI2-Y9gJUNsDVNbbQI2zFnJYz-_vyat6U2kT_4Xrf-Ep1VovH66k-naLOYb2ZP8er1cTl7WMWKYNbHJZOVVJjJLGWQQ6FkAQnLaQUpBk1lWkghlMokUxQzlQtBcFnkQUGKkpEpuhljO2ff9tr3fGf3LjzleZIRiiHLiyJQyUgpZ713uuKdq1vhDhwDH4rlY7EchhmK5UkwkdHkA2y22h2j_3H9AHopfhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635106788</pqid></control><display><type>article</type><title>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</title><source>Springer Link</source><creator>Sabir, Zulqurnain ; Raja, Muhammad Asif Zahoor ; Umar, Muhammad ; Shoaib, Muhammad ; Baleanu, Dumitru</creator><creatorcontrib>Sabir, Zulqurnain ; Raja, Muhammad Asif Zahoor ; Umar, Muhammad ; Shoaib, Muhammad ; Baleanu, Dumitru</creatorcontrib><description>The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06452-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Astrophysics ; Computation ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Design ; Genetic algorithms ; Global optimization ; Gravitation ; Heuristic ; Image Processing and Computer Vision ; Mathematics ; Neural networks ; Optimization ; Original Article ; Particle swarm optimization ; Probability and Statistics in Computer Science ; Quadratic programming ; Solvers</subject><ispartof>Neural computing &amp; applications, 2022-03, Vol.34 (6), p.4193-4206</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</citedby><cites>FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</cites><orcidid>0000-0002-0286-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sabir, Zulqurnain</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Umar, Muhammad</creatorcontrib><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Astrophysics</subject><subject>Computation</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Design</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Gravitation</subject><subject>Heuristic</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Probability and Statistics in Computer Science</subject><subject>Quadratic programming</subject><subject>Solvers</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaRWAfGcZzE7FDVQqUCi3Zv2Y5TpUrsYKeg7rgDN-QkOASpOxajr9G8_zX6CF1juMUA-Z0HoAmOYZgspUmcnKAJTgmJCdDiFE2Apb8nco4uvN8BQJoVdIK6xfPLejlb30cLJ1RfWyOa6FkftIuM3jsb-w_h2qg2vW6aeqtNHynbdvu-NtvI2-Y9gJUNsDVNbbQI2zFnJYz-_vyat6U2kT_4Xrf-Ep1VovH66k-naLOYb2ZP8er1cTl7WMWKYNbHJZOVVJjJLGWQQ6FkAQnLaQUpBk1lWkghlMokUxQzlQtBcFnkQUGKkpEpuhljO2ff9tr3fGf3LjzleZIRiiHLiyJQyUgpZ713uuKdq1vhDhwDH4rlY7EchhmK5UkwkdHkA2y22h2j_3H9AHopfhs</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sabir, Zulqurnain</creator><creator>Raja, Muhammad Asif Zahoor</creator><creator>Umar, Muhammad</creator><creator>Shoaib, Muhammad</creator><creator>Baleanu, Dumitru</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid></search><sort><creationdate>20220301</creationdate><title>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</title><author>Sabir, Zulqurnain ; Raja, Muhammad Asif Zahoor ; Umar, Muhammad ; Shoaib, Muhammad ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Astrophysics</topic><topic>Computation</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Design</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Gravitation</topic><topic>Heuristic</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Probability and Statistics in Computer Science</topic><topic>Quadratic programming</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabir, Zulqurnain</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Umar, Muhammad</creatorcontrib><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabir, Zulqurnain</au><au>Raja, Muhammad Asif Zahoor</au><au>Umar, Muhammad</au><au>Shoaib, Muhammad</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>4193</spage><epage>4206</epage><pages>4193-4206</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06452-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-03, Vol.34 (6), p.4193-4206
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2635106788
source Springer Link
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Astrophysics
Computation
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Design
Genetic algorithms
Global optimization
Gravitation
Heuristic
Image Processing and Computer Vision
Mathematics
Neural networks
Optimization
Original Article
Particle swarm optimization
Probability and Statistics in Computer Science
Quadratic programming
Solvers
title FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMNSICS:%20Fractional%20Meyer%20neuro-swarm%20intelligent%20computing%20solver%20for%20nonlinear%20fractional%20Lane%E2%80%93Emden%20systems&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Sabir,%20Zulqurnain&rft.date=2022-03-01&rft.volume=34&rft.issue=6&rft.spage=4193&rft.epage=4206&rft.pages=4193-4206&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06452-2&rft_dat=%3Cproquest_cross%3E2635106788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635106788&rft_id=info:pmid/&rfr_iscdi=true