Loading…
FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems
The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a n...
Saved in:
Published in: | Neural computing & applications 2022-03, Vol.34 (6), p.4193-4206 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93 |
container_end_page | 4206 |
container_issue | 6 |
container_start_page | 4193 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Sabir, Zulqurnain Raja, Muhammad Asif Zahoor Umar, Muhammad Shoaib, Muhammad Baleanu, Dumitru |
description | The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations. |
doi_str_mv | 10.1007/s00521-021-06452-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635106788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635106788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaRWAfGcZzE7FDVQqUCi3Zv2Y5TpUrsYKeg7rgDN-QkOASpOxajr9G8_zX6CF1juMUA-Z0HoAmOYZgspUmcnKAJTgmJCdDiFE2Apb8nco4uvN8BQJoVdIK6xfPLejlb30cLJ1RfWyOa6FkftIuM3jsb-w_h2qg2vW6aeqtNHynbdvu-NtvI2-Y9gJUNsDVNbbQI2zFnJYz-_vyat6U2kT_4Xrf-Ep1VovH66k-naLOYb2ZP8er1cTl7WMWKYNbHJZOVVJjJLGWQQ6FkAQnLaQUpBk1lWkghlMokUxQzlQtBcFnkQUGKkpEpuhljO2ff9tr3fGf3LjzleZIRiiHLiyJQyUgpZ713uuKdq1vhDhwDH4rlY7EchhmK5UkwkdHkA2y22h2j_3H9AHopfhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635106788</pqid></control><display><type>article</type><title>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</title><source>Springer Link</source><creator>Sabir, Zulqurnain ; Raja, Muhammad Asif Zahoor ; Umar, Muhammad ; Shoaib, Muhammad ; Baleanu, Dumitru</creator><creatorcontrib>Sabir, Zulqurnain ; Raja, Muhammad Asif Zahoor ; Umar, Muhammad ; Shoaib, Muhammad ; Baleanu, Dumitru</creatorcontrib><description>The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06452-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Astrophysics ; Computation ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Design ; Genetic algorithms ; Global optimization ; Gravitation ; Heuristic ; Image Processing and Computer Vision ; Mathematics ; Neural networks ; Optimization ; Original Article ; Particle swarm optimization ; Probability and Statistics in Computer Science ; Quadratic programming ; Solvers</subject><ispartof>Neural computing & applications, 2022-03, Vol.34 (6), p.4193-4206</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</citedby><cites>FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</cites><orcidid>0000-0002-0286-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sabir, Zulqurnain</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Umar, Muhammad</creatorcontrib><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Astrophysics</subject><subject>Computation</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Design</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Gravitation</subject><subject>Heuristic</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Probability and Statistics in Computer Science</subject><subject>Quadratic programming</subject><subject>Solvers</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaRWAfGcZzE7FDVQqUCi3Zv2Y5TpUrsYKeg7rgDN-QkOASpOxajr9G8_zX6CF1juMUA-Z0HoAmOYZgspUmcnKAJTgmJCdDiFE2Apb8nco4uvN8BQJoVdIK6xfPLejlb30cLJ1RfWyOa6FkftIuM3jsb-w_h2qg2vW6aeqtNHynbdvu-NtvI2-Y9gJUNsDVNbbQI2zFnJYz-_vyat6U2kT_4Xrf-Ep1VovH66k-naLOYb2ZP8er1cTl7WMWKYNbHJZOVVJjJLGWQQ6FkAQnLaQUpBk1lWkghlMokUxQzlQtBcFnkQUGKkpEpuhljO2ff9tr3fGf3LjzleZIRiiHLiyJQyUgpZ713uuKdq1vhDhwDH4rlY7EchhmK5UkwkdHkA2y22h2j_3H9AHopfhs</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sabir, Zulqurnain</creator><creator>Raja, Muhammad Asif Zahoor</creator><creator>Umar, Muhammad</creator><creator>Shoaib, Muhammad</creator><creator>Baleanu, Dumitru</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid></search><sort><creationdate>20220301</creationdate><title>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</title><author>Sabir, Zulqurnain ; Raja, Muhammad Asif Zahoor ; Umar, Muhammad ; Shoaib, Muhammad ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Astrophysics</topic><topic>Computation</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Design</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Gravitation</topic><topic>Heuristic</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Probability and Statistics in Computer Science</topic><topic>Quadratic programming</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabir, Zulqurnain</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Umar, Muhammad</creatorcontrib><creatorcontrib>Shoaib, Muhammad</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabir, Zulqurnain</au><au>Raja, Muhammad Asif Zahoor</au><au>Umar, Muhammad</au><au>Shoaib, Muhammad</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>4193</spage><epage>4206</epage><pages>4193-4206</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The fractional neuro-evolution-based intelligent computing has substantial potential to solve fractional order systems represented with Lane–Emden equation arising in astrophysics including Newtonian self-gravitating, spherically symmetric and polytropic fluid. The present study aimed to present a neuro-swarm-based intelligent computing solver for the solution of nonlinear fractional Lane–Emden system (NFLES) using by exploitation of fractional Meyer wavelet artificial neural networks (FMW-ANNs) and global optimization mechanism of particle swarm optimization (PSO) combined with rapid local search of sequential quadratic programming (SQP), i.e., FMW-ANN-PSO-SQP. The motivation for the design of FMW-ANN-PSO-SQP intelligent computing comes with an objective of presenting an accurate, reliable, and viable framworks to deal with stiff nonlinear singular models represented with NFLES involving both fractional and integer derivative terms. The designed algorithm is tested for six different variants of NFLESs. The obtained numerical outcomes obtained by the proposed FMW-ANN-PSO-SQP are compared with the exact results to authenticate the correctness, efficacy, and viability, and these aspects are further endorsed statistical observations.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06452-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-03, Vol.34 (6), p.4193-4206 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2635106788 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Artificial neural networks Astrophysics Computation Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Design Genetic algorithms Global optimization Gravitation Heuristic Image Processing and Computer Vision Mathematics Neural networks Optimization Original Article Particle swarm optimization Probability and Statistics in Computer Science Quadratic programming Solvers |
title | FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMNSICS:%20Fractional%20Meyer%20neuro-swarm%20intelligent%20computing%20solver%20for%20nonlinear%20fractional%20Lane%E2%80%93Emden%20systems&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Sabir,%20Zulqurnain&rft.date=2022-03-01&rft.volume=34&rft.issue=6&rft.spage=4193&rft.epage=4206&rft.pages=4193-4206&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06452-2&rft_dat=%3Cproquest_cross%3E2635106788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d9bfbc19b6490708cb802975f0410e5b48baacc6b9c519c7aa31d877aa0bad93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635106788&rft_id=info:pmid/&rfr_iscdi=true |