Loading…

In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage

•N-doped MoS2 anchored on 1D N-doped carbon skeleton (N-MoS2@NCNT) is fabricated via a feasible route.•Highly conductive N-doped MoS2 is formed by substituting the S atoms of MoS2 with N decomposed from NH4+ ions.•Mo-N bonds are beneficial to boosting the structural stability during electrochemical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2022-03, Vol.897, p.163170, Article 163170
Main Authors: Li, Jinhang, He, Tianqi, Zhao, Yingying, Zhang, Xinci, Zhong, Wenxu, Zhang, Xitian, Ren, Jing, Chen, Yujin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643
cites cdi_FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643
container_end_page
container_issue
container_start_page 163170
container_title Journal of alloys and compounds
container_volume 897
creator Li, Jinhang
He, Tianqi
Zhao, Yingying
Zhang, Xinci
Zhong, Wenxu
Zhang, Xitian
Ren, Jing
Chen, Yujin
description •N-doped MoS2 anchored on 1D N-doped carbon skeleton (N-MoS2@NCNT) is fabricated via a feasible route.•Highly conductive N-doped MoS2 is formed by substituting the S atoms of MoS2 with N decomposed from NH4+ ions.•Mo-N bonds are beneficial to boosting the structural stability during electrochemical process.•N-MoS2@NCNT electrode presents a superhigh capacity of 504.1 mAh g–1 after 100 cycles at 0.1 A g–1. [Display omitted] As one of the most promising anode materials in sodium ion batteries (SIBs), MoS2 has been severely hindered its wide application in the field of energy storage due to the low electronic conductivity and severe volume variation during charge/discharge. Herein, we propose and synthesize an innovative structure of ultrathin N-doped MoS2 nanosheets anchored on hollow N-doped carbon nanotube skeleton by Mo-N bonds (N-MoS2@NCNT). It is demonstrated that the N atoms decomposed from NH4+ ions after annealing in-situ substitute the basal S atoms in MoS2 structure to form N-doped MoS2 (N-MoS2), which improves the conductivity of the materials. Moreover, the stable Mo-N bonds between N-MoS2 and carbon skeleton keep the structural integrity of the electrode. With these merits, the N-MoS2@NCNT electrode shows high reversible capacity of 504.1 mAh g–1 with the ultrahigh capacity retention of 104.4 % after 100 cycles at 0.1 A g–1. The structural engineering of in-situ nitrogen doping combined with the tight chemical bonds between active material and carbon can significantly increase the electrochemical performance of MoS2. This strategy also provides an original idea for the next step of designing high-performance transition metal sulfide/carbon-based composites anodes for SIBs.
doi_str_mv 10.1016/j.jallcom.2021.163170
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635267575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821045801</els_id><sourcerecordid>2635267575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643</originalsourceid><addsrcrecordid>eNqFUE1P3DAUtFArsaX8BCRLPWdrx_HXqapQP5BgOQBny7FfwGk2Tm0Hac_88Rot6pXT05s3M08zCF1QsqWEiq_jdrTT5OJ-25KWbqlgVJITtKFKsqYTQn9AG6Jb3iim1Cn6lPNICKGa0Q16uZqbHMqKd42PC3i8TiXZ8hRmfBPvWmxn9xRTxeP8n-Js6us62zmWtYeM8x-YoFSoP1RVs8P17DMeYsKDzQUvGVYfnV2sCyU8A87Rh3WPc4nJPsJn9HGwU4bzt3mGHn7-uL_83Vzf_rq6_H7dOMZkaZRXmhExMC2cEjD0HQgrfSd661XPlebdoIkG8FKqmt1RTpxVshOd5lp07Ax9OfouKf5dIRczxjXN9aVpBeOtkFzyyuJHlksx5wSDWVLY23QwlJjXvs1o3vo2r32bY99V9-2ogxrhOUAy2QWYHfiQwBXjY3jH4R-wiYxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635267575</pqid></control><display><type>article</type><title>In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage</title><source>ScienceDirect Journals</source><creator>Li, Jinhang ; He, Tianqi ; Zhao, Yingying ; Zhang, Xinci ; Zhong, Wenxu ; Zhang, Xitian ; Ren, Jing ; Chen, Yujin</creator><creatorcontrib>Li, Jinhang ; He, Tianqi ; Zhao, Yingying ; Zhang, Xinci ; Zhong, Wenxu ; Zhang, Xitian ; Ren, Jing ; Chen, Yujin</creatorcontrib><description>•N-doped MoS2 anchored on 1D N-doped carbon skeleton (N-MoS2@NCNT) is fabricated via a feasible route.•Highly conductive N-doped MoS2 is formed by substituting the S atoms of MoS2 with N decomposed from NH4+ ions.•Mo-N bonds are beneficial to boosting the structural stability during electrochemical process.•N-MoS2@NCNT electrode presents a superhigh capacity of 504.1 mAh g–1 after 100 cycles at 0.1 A g–1. [Display omitted] As one of the most promising anode materials in sodium ion batteries (SIBs), MoS2 has been severely hindered its wide application in the field of energy storage due to the low electronic conductivity and severe volume variation during charge/discharge. Herein, we propose and synthesize an innovative structure of ultrathin N-doped MoS2 nanosheets anchored on hollow N-doped carbon nanotube skeleton by Mo-N bonds (N-MoS2@NCNT). It is demonstrated that the N atoms decomposed from NH4+ ions after annealing in-situ substitute the basal S atoms in MoS2 structure to form N-doped MoS2 (N-MoS2), which improves the conductivity of the materials. Moreover, the stable Mo-N bonds between N-MoS2 and carbon skeleton keep the structural integrity of the electrode. With these merits, the N-MoS2@NCNT electrode shows high reversible capacity of 504.1 mAh g–1 with the ultrahigh capacity retention of 104.4 % after 100 cycles at 0.1 A g–1. The structural engineering of in-situ nitrogen doping combined with the tight chemical bonds between active material and carbon can significantly increase the electrochemical performance of MoS2. This strategy also provides an original idea for the next step of designing high-performance transition metal sulfide/carbon-based composites anodes for SIBs.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.163170</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anodes ; Atomic structure ; Bonding strength ; Carbon ; Carbon nanotubes ; Chemical bonds ; Electrochemical analysis ; Electrochemical performances ; Electrode materials ; Energy storage ; Hollow carbon skeleton ; In-situ N-doped MoS2 ; Mo-N bonds ; Molybdenum disulfide ; Nitrogen ; Sodium ion battery ; Sodium-ion batteries ; Structural engineering ; Structural integrity ; Transition metals</subject><ispartof>Journal of alloys and compounds, 2022-03, Vol.897, p.163170, Article 163170</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Mar 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643</citedby><cites>FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Jinhang</creatorcontrib><creatorcontrib>He, Tianqi</creatorcontrib><creatorcontrib>Zhao, Yingying</creatorcontrib><creatorcontrib>Zhang, Xinci</creatorcontrib><creatorcontrib>Zhong, Wenxu</creatorcontrib><creatorcontrib>Zhang, Xitian</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><title>In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage</title><title>Journal of alloys and compounds</title><description>•N-doped MoS2 anchored on 1D N-doped carbon skeleton (N-MoS2@NCNT) is fabricated via a feasible route.•Highly conductive N-doped MoS2 is formed by substituting the S atoms of MoS2 with N decomposed from NH4+ ions.•Mo-N bonds are beneficial to boosting the structural stability during electrochemical process.•N-MoS2@NCNT electrode presents a superhigh capacity of 504.1 mAh g–1 after 100 cycles at 0.1 A g–1. [Display omitted] As one of the most promising anode materials in sodium ion batteries (SIBs), MoS2 has been severely hindered its wide application in the field of energy storage due to the low electronic conductivity and severe volume variation during charge/discharge. Herein, we propose and synthesize an innovative structure of ultrathin N-doped MoS2 nanosheets anchored on hollow N-doped carbon nanotube skeleton by Mo-N bonds (N-MoS2@NCNT). It is demonstrated that the N atoms decomposed from NH4+ ions after annealing in-situ substitute the basal S atoms in MoS2 structure to form N-doped MoS2 (N-MoS2), which improves the conductivity of the materials. Moreover, the stable Mo-N bonds between N-MoS2 and carbon skeleton keep the structural integrity of the electrode. With these merits, the N-MoS2@NCNT electrode shows high reversible capacity of 504.1 mAh g–1 with the ultrahigh capacity retention of 104.4 % after 100 cycles at 0.1 A g–1. The structural engineering of in-situ nitrogen doping combined with the tight chemical bonds between active material and carbon can significantly increase the electrochemical performance of MoS2. This strategy also provides an original idea for the next step of designing high-performance transition metal sulfide/carbon-based composites anodes for SIBs.</description><subject>Anodes</subject><subject>Atomic structure</subject><subject>Bonding strength</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical bonds</subject><subject>Electrochemical analysis</subject><subject>Electrochemical performances</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Hollow carbon skeleton</subject><subject>In-situ N-doped MoS2</subject><subject>Mo-N bonds</subject><subject>Molybdenum disulfide</subject><subject>Nitrogen</subject><subject>Sodium ion battery</subject><subject>Sodium-ion batteries</subject><subject>Structural engineering</subject><subject>Structural integrity</subject><subject>Transition metals</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUE1P3DAUtFArsaX8BCRLPWdrx_HXqapQP5BgOQBny7FfwGk2Tm0Hac_88Rot6pXT05s3M08zCF1QsqWEiq_jdrTT5OJ-25KWbqlgVJITtKFKsqYTQn9AG6Jb3iim1Cn6lPNICKGa0Q16uZqbHMqKd42PC3i8TiXZ8hRmfBPvWmxn9xRTxeP8n-Js6us62zmWtYeM8x-YoFSoP1RVs8P17DMeYsKDzQUvGVYfnV2sCyU8A87Rh3WPc4nJPsJn9HGwU4bzt3mGHn7-uL_83Vzf_rq6_H7dOMZkaZRXmhExMC2cEjD0HQgrfSd661XPlebdoIkG8FKqmt1RTpxVshOd5lp07Ax9OfouKf5dIRczxjXN9aVpBeOtkFzyyuJHlksx5wSDWVLY23QwlJjXvs1o3vo2r32bY99V9-2ogxrhOUAy2QWYHfiQwBXjY3jH4R-wiYxc</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Li, Jinhang</creator><creator>He, Tianqi</creator><creator>Zhao, Yingying</creator><creator>Zhang, Xinci</creator><creator>Zhong, Wenxu</creator><creator>Zhang, Xitian</creator><creator>Ren, Jing</creator><creator>Chen, Yujin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220315</creationdate><title>In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage</title><author>Li, Jinhang ; He, Tianqi ; Zhao, Yingying ; Zhang, Xinci ; Zhong, Wenxu ; Zhang, Xitian ; Ren, Jing ; Chen, Yujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Atomic structure</topic><topic>Bonding strength</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical bonds</topic><topic>Electrochemical analysis</topic><topic>Electrochemical performances</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Hollow carbon skeleton</topic><topic>In-situ N-doped MoS2</topic><topic>Mo-N bonds</topic><topic>Molybdenum disulfide</topic><topic>Nitrogen</topic><topic>Sodium ion battery</topic><topic>Sodium-ion batteries</topic><topic>Structural engineering</topic><topic>Structural integrity</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinhang</creatorcontrib><creatorcontrib>He, Tianqi</creatorcontrib><creatorcontrib>Zhao, Yingying</creatorcontrib><creatorcontrib>Zhang, Xinci</creatorcontrib><creatorcontrib>Zhong, Wenxu</creatorcontrib><creatorcontrib>Zhang, Xitian</creatorcontrib><creatorcontrib>Ren, Jing</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinhang</au><au>He, Tianqi</au><au>Zhao, Yingying</au><au>Zhang, Xinci</au><au>Zhong, Wenxu</au><au>Zhang, Xitian</au><au>Ren, Jing</au><au>Chen, Yujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>897</volume><spage>163170</spage><pages>163170-</pages><artnum>163170</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•N-doped MoS2 anchored on 1D N-doped carbon skeleton (N-MoS2@NCNT) is fabricated via a feasible route.•Highly conductive N-doped MoS2 is formed by substituting the S atoms of MoS2 with N decomposed from NH4+ ions.•Mo-N bonds are beneficial to boosting the structural stability during electrochemical process.•N-MoS2@NCNT electrode presents a superhigh capacity of 504.1 mAh g–1 after 100 cycles at 0.1 A g–1. [Display omitted] As one of the most promising anode materials in sodium ion batteries (SIBs), MoS2 has been severely hindered its wide application in the field of energy storage due to the low electronic conductivity and severe volume variation during charge/discharge. Herein, we propose and synthesize an innovative structure of ultrathin N-doped MoS2 nanosheets anchored on hollow N-doped carbon nanotube skeleton by Mo-N bonds (N-MoS2@NCNT). It is demonstrated that the N atoms decomposed from NH4+ ions after annealing in-situ substitute the basal S atoms in MoS2 structure to form N-doped MoS2 (N-MoS2), which improves the conductivity of the materials. Moreover, the stable Mo-N bonds between N-MoS2 and carbon skeleton keep the structural integrity of the electrode. With these merits, the N-MoS2@NCNT electrode shows high reversible capacity of 504.1 mAh g–1 with the ultrahigh capacity retention of 104.4 % after 100 cycles at 0.1 A g–1. The structural engineering of in-situ nitrogen doping combined with the tight chemical bonds between active material and carbon can significantly increase the electrochemical performance of MoS2. This strategy also provides an original idea for the next step of designing high-performance transition metal sulfide/carbon-based composites anodes for SIBs.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.163170</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-03, Vol.897, p.163170, Article 163170
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2635267575
source ScienceDirect Journals
subjects Anodes
Atomic structure
Bonding strength
Carbon
Carbon nanotubes
Chemical bonds
Electrochemical analysis
Electrochemical performances
Electrode materials
Energy storage
Hollow carbon skeleton
In-situ N-doped MoS2
Mo-N bonds
Molybdenum disulfide
Nitrogen
Sodium ion battery
Sodium-ion batteries
Structural engineering
Structural integrity
Transition metals
title In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20N-doped%20ultrathin%20MoS2%20anchored%20on%20N-doped%20carbon%20nanotubes%20skeleton%20by%20Mo-N%20bonds%20for%20fast%20pseudocapacitive%20sodium%20storage&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Li,%20Jinhang&rft.date=2022-03-15&rft.volume=897&rft.spage=163170&rft.pages=163170-&rft.artnum=163170&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.163170&rft_dat=%3Cproquest_cross%3E2635267575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-8d89306f396c86efb4e6a7d46bad8b58954f909eed778187c150ca87464959643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635267575&rft_id=info:pmid/&rfr_iscdi=true