Loading…
Pairwise quantum correlations in four-level quantum dot systems
In this paper we assume quantum dots can be assimilated to Fermi Hubbard sites when the Coulomb interaction between electrons is higher compared to their tunneling. The study of pairwise entanglement in a small size array of quantum dots allows to model each pair as a quadrit-quadrit system (4 \(\ti...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we assume quantum dots can be assimilated to Fermi Hubbard sites when the Coulomb interaction between electrons is higher compared to their tunneling. The study of pairwise entanglement in a small size array of quantum dots allows to model each pair as a quadrit-quadrit system (4 \(\times\) 4 mixed state) instead of the more common and simplistic approach of describing it in quantum information as a qubit-qubit system. We study the effect of Coulomb interaction and temperature on pairwise entanglement as well as on quantum coherence and total correlations. The crucial results of this study are that entanglement resists better the increase in temperature when the Coulomb interaction is stronger. Moreover, we successfully explain the behavior of these correlations in terms of the energy spectrum, namely the ground state degeneracy and the state energy difference. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2203.01078 |