Loading…
NCGAN:A neural adversarial collaborative filtering for recommender system
The major challenge of recommendation system (RS) based on implict feedback is to accurately model users’ preferences from their historical feedback. Nowadays, researchers has tried to apply adversarial technique in RS, which had presented successful results in various domains. To a certain extent,...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2022-01, Vol.42 (4), p.2915-2923 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The major challenge of recommendation system (RS) based on implict feedback is to accurately model users’ preferences from their historical feedback. Nowadays, researchers has tried to apply adversarial technique in RS, which had presented successful results in various domains. To a certain extent, the use of adversarial technique improves the modeling of users’ preferences. Nonetheless, there are still many problems to be solved, such as insufficient representation and low-level interaction. In this paper, we propose a recommendation algorithm NCGAN which combines neural collaborative filtering and generative adversarial network (GAN). We use the neural networks to extract users’ non-linear characteristics. At the same time, we integrate the GAN framework to guide the recommendation model training. Among them, the generator aims to make user recommendations and the discriminator is equivalent to a measurement tool which could measure the distance between the generated distribution and users’ ground distribution. Through comparison with other existing recommendation algorithms, our algorithm show better experimental performance in all indicators. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-210123 |