Loading…
A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation
This work presents a 15-57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS p...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2022-03, Vol.70 (3), p.1732-1744 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33 |
---|---|
cites | cdi_FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33 |
container_end_page | 1744 |
container_issue | 3 |
container_start_page | 1732 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 70 |
creator | Alhamed, Abdulrahman Kazan, Oguz Gultepe, Gokhan Rebeiz, Gabriel M. |
description | This work presents a 15-57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24-25 dB and a 4.7-6.2 dB noise figure (NF) with a −29 to −24 dBm input P_{\boldsymbol {1\,dB}} at 20-40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans ±55° with < -12 -dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with < 2.76% error vector magnitude (EVM) at multiple 5G NR FR2 bands. To the author's knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems. |
doi_str_mv | 10.1109/TMTT.2021.3136256 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635711335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9674742</ieee_id><sourcerecordid>2635711335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwAMRmJNZp7diO42Vb0R-ppaiUdeQkY0jVJsFJkMqKW3AgLkZKK1bzZvTeG-kj5JbRHmNU99eL9brnU5_1OOOBL4Mz0mFSKk8Hip6TDqUs9LQI6SW5qqpNuwpJww75GsCi2dZZbPK0_6equpXGpcCkJxVMpp-wwgSzD4SnN1Nh6g2cM3tYFGmzRRgeTlDkIODnGxgM0exs4XboYDaCtgqem7IsXJ3lryAn8LiC8cqHZYnO1FmRX5MLa7YV3pxml7yMH9ajqTdfTmajwdxLfCVqT1kMtJIqFIwKkeiAS5lYhipV0mguNaehCjVlsdY2UTYxIkxMnFqMrYot511yf-wtXfHeYFVHm6Jxefsy8tsyxRjnsnWxoytxRVU5tFHpsp1x-4jR6AA6OoCODqCjE-g2c3fMZIj472-5CyV8_gsS2nej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635711335</pqid></control><display><type>article</type><title>A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alhamed, Abdulrahman ; Kazan, Oguz ; Gultepe, Gokhan ; Rebeiz, Gabriel M.</creator><creatorcontrib>Alhamed, Abdulrahman ; Kazan, Oguz ; Gultepe, Gokhan ; Rebeiz, Gabriel M.</creatorcontrib><description><![CDATA[This work presents a 15-57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24-25 dB and a 4.7-6.2 dB noise figure (NF) with a −29 to −24 dBm input <inline-formula> <tex-math notation="LaTeX">P_{\boldsymbol {1\,dB}} </tex-math></inline-formula> at 20-40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans ±55° with <inline-formula> <tex-math notation="LaTeX"> < -12 </tex-math></inline-formula>-dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with < 2.76% error vector magnitude (EVM) at multiple 5G NR FR2 bands. To the author's knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3136256</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Amplification ; Amplifiers ; Antenna arrays ; Array signal processing ; Beamformer ; Beamforming ; Circuit design ; data link ; error vector magnitude (EVM) ; fifth generation (5G) ; flip-chip ; Frequency ranges ; Frequency response ; Gain ; Integrated circuits ; millimeter wave (mm-wave) ; Modules ; multiband ; Noise levels ; Noise measurement ; Phase shifters ; phased array ; Phased arrays ; printed circuit board (PCB) ; Quadrature amplitude modulation ; quadrature amplitude modulation (QAM) ; receiver ; Sidelobes ; SiGe ; Silicon germanides ; Silicon germanium ; Ultrawideband ; Variable gain ; Vivaldi antenna ; Wideband</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-03, Vol.70 (3), p.1732-1744</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33</citedby><cites>FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33</cites><orcidid>0000-0002-2049-797X ; 0000-0002-9597-9682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9674742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Alhamed, Abdulrahman</creatorcontrib><creatorcontrib>Kazan, Oguz</creatorcontrib><creatorcontrib>Gultepe, Gokhan</creatorcontrib><creatorcontrib>Rebeiz, Gabriel M.</creatorcontrib><title>A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[This work presents a 15-57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24-25 dB and a 4.7-6.2 dB noise figure (NF) with a −29 to −24 dBm input <inline-formula> <tex-math notation="LaTeX">P_{\boldsymbol {1\,dB}} </tex-math></inline-formula> at 20-40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans ±55° with <inline-formula> <tex-math notation="LaTeX"> < -12 </tex-math></inline-formula>-dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with < 2.76% error vector magnitude (EVM) at multiple 5G NR FR2 bands. To the author's knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.]]></description><subject>5G mobile communication</subject><subject>Amplification</subject><subject>Amplifiers</subject><subject>Antenna arrays</subject><subject>Array signal processing</subject><subject>Beamformer</subject><subject>Beamforming</subject><subject>Circuit design</subject><subject>data link</subject><subject>error vector magnitude (EVM)</subject><subject>fifth generation (5G)</subject><subject>flip-chip</subject><subject>Frequency ranges</subject><subject>Frequency response</subject><subject>Gain</subject><subject>Integrated circuits</subject><subject>millimeter wave (mm-wave)</subject><subject>Modules</subject><subject>multiband</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>Phase shifters</subject><subject>phased array</subject><subject>Phased arrays</subject><subject>printed circuit board (PCB)</subject><subject>Quadrature amplitude modulation</subject><subject>quadrature amplitude modulation (QAM)</subject><subject>receiver</subject><subject>Sidelobes</subject><subject>SiGe</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>Ultrawideband</subject><subject>Variable gain</subject><subject>Vivaldi antenna</subject><subject>Wideband</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqVwAMRmJNZp7diO42Vb0R-ppaiUdeQkY0jVJsFJkMqKW3AgLkZKK1bzZvTeG-kj5JbRHmNU99eL9brnU5_1OOOBL4Mz0mFSKk8Hip6TDqUs9LQI6SW5qqpNuwpJww75GsCi2dZZbPK0_6equpXGpcCkJxVMpp-wwgSzD4SnN1Nh6g2cM3tYFGmzRRgeTlDkIODnGxgM0exs4XboYDaCtgqem7IsXJ3lryAn8LiC8cqHZYnO1FmRX5MLa7YV3pxml7yMH9ajqTdfTmajwdxLfCVqT1kMtJIqFIwKkeiAS5lYhipV0mguNaehCjVlsdY2UTYxIkxMnFqMrYot511yf-wtXfHeYFVHm6Jxefsy8tsyxRjnsnWxoytxRVU5tFHpsp1x-4jR6AA6OoCODqCjE-g2c3fMZIj472-5CyV8_gsS2nej</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Alhamed, Abdulrahman</creator><creator>Kazan, Oguz</creator><creator>Gultepe, Gokhan</creator><creator>Rebeiz, Gabriel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2049-797X</orcidid><orcidid>https://orcid.org/0000-0002-9597-9682</orcidid></search><sort><creationdate>20220301</creationdate><title>A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation</title><author>Alhamed, Abdulrahman ; Kazan, Oguz ; Gultepe, Gokhan ; Rebeiz, Gabriel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>Amplification</topic><topic>Amplifiers</topic><topic>Antenna arrays</topic><topic>Array signal processing</topic><topic>Beamformer</topic><topic>Beamforming</topic><topic>Circuit design</topic><topic>data link</topic><topic>error vector magnitude (EVM)</topic><topic>fifth generation (5G)</topic><topic>flip-chip</topic><topic>Frequency ranges</topic><topic>Frequency response</topic><topic>Gain</topic><topic>Integrated circuits</topic><topic>millimeter wave (mm-wave)</topic><topic>Modules</topic><topic>multiband</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>Phase shifters</topic><topic>phased array</topic><topic>Phased arrays</topic><topic>printed circuit board (PCB)</topic><topic>Quadrature amplitude modulation</topic><topic>quadrature amplitude modulation (QAM)</topic><topic>receiver</topic><topic>Sidelobes</topic><topic>SiGe</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>Ultrawideband</topic><topic>Variable gain</topic><topic>Vivaldi antenna</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhamed, Abdulrahman</creatorcontrib><creatorcontrib>Kazan, Oguz</creatorcontrib><creatorcontrib>Gultepe, Gokhan</creatorcontrib><creatorcontrib>Rebeiz, Gabriel M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhamed, Abdulrahman</au><au>Kazan, Oguz</au><au>Gultepe, Gokhan</au><au>Rebeiz, Gabriel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>70</volume><issue>3</issue><spage>1732</spage><epage>1744</epage><pages>1732-1744</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[This work presents a 15-57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24-25 dB and a 4.7-6.2 dB noise figure (NF) with a −29 to −24 dBm input <inline-formula> <tex-math notation="LaTeX">P_{\boldsymbol {1\,dB}} </tex-math></inline-formula> at 20-40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans ±55° with <inline-formula> <tex-math notation="LaTeX"> < -12 </tex-math></inline-formula>-dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with < 2.76% error vector magnitude (EVM) at multiple 5G NR FR2 bands. To the author's knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3136256</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2049-797X</orcidid><orcidid>https://orcid.org/0000-0002-9597-9682</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2022-03, Vol.70 (3), p.1732-1744 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_2635711335 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 5G mobile communication Amplification Amplifiers Antenna arrays Array signal processing Beamformer Beamforming Circuit design data link error vector magnitude (EVM) fifth generation (5G) flip-chip Frequency ranges Frequency response Gain Integrated circuits millimeter wave (mm-wave) Modules multiband Noise levels Noise measurement Phase shifters phased array Phased arrays printed circuit board (PCB) Quadrature amplitude modulation quadrature amplitude modulation (QAM) receiver Sidelobes SiGe Silicon germanides Silicon germanium Ultrawideband Variable gain Vivaldi antenna Wideband |
title | A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiband/Multistandard%2015-57%20GHz%20Receive%20Phased-Array%20Module%20Based%20on%204%20%C3%97%201%20Beamformer%20IC%20and%20Supporting%205G%20NR%20FR2%20Operation&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Alhamed,%20Abdulrahman&rft.date=2022-03-01&rft.volume=70&rft.issue=3&rft.spage=1732&rft.epage=1744&rft.pages=1732-1744&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3136256&rft_dat=%3Cproquest_cross%3E2635711335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-7fe69757841044c96355cf1e7d75a935930878901b99fc7fca48cabdfebf7bf33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635711335&rft_id=info:pmid/&rft_ieee_id=9674742&rfr_iscdi=true |