Loading…
Three-Dimensional Velocity Measurement Using a Dual Axis Millimeter-Wave Interferometric Radar
In this work, a method for directly measuring target velocity in three dimensions using a dual axis correlation interferometric radar is presented. Recent advances have shown that the measurement of a target's angular velocity is possible by correlating the signals measured at spatially diverse...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2022-03, Vol.70 (3), p.1674-1685 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-29038e05ebad1a9d973c71ec2bdec8004d016d476b56a1591261e3523bbf3be03 |
container_end_page | 1685 |
container_issue | 3 |
container_start_page | 1674 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 70 |
creator | Merlo, Jason Klinefelter, Eric Nanzer, Jeffrey A. |
description | In this work, a method for directly measuring target velocity in three dimensions using a dual axis correlation interferometric radar is presented. Recent advances have shown that the measurement of a target's angular velocity is possible by correlating the signals measured at spatially diverse aperture locations. By utilizing multiple orthogonal baselines and using conventional Doppler velocity methods to obtain radial velocity, a full 3-D velocity vector can be obtained using only three receive antennas and a single transmitter, without the need for tracking. A 41.8-GHz dual axis interferometric radar with a {7.26\lambda } antenna baseline is presented along with measurements of a target moving parallel to the plane of the radar array, and of a target moving with components of both radial and tangential velocity. These experiments achieved total velocity root-mean-square errors (RMSEs) of 41.01 mm \cdot \,\,\text{s}^{-1} (10.5%) for a target moving along a plane parallel to the array, and 45.07 mm \cdot \,\,\text{s}^{-1} (13.5%) for a target moving with components of radial and tangential motion relative to the array; estimated trajectory angle RMSEs of 10.42° and 5.11° were achieved for each experiment. |
doi_str_mv | 10.1109/TMTT.2021.3124251 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635712778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618657</ieee_id><sourcerecordid>2635712778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-29038e05ebad1a9d973c71ec2bdec8004d016d476b56a1591261e3523bbf3be03</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPhS8LkzlzRN8zg2fww2BOn0zZC2V83o2pm04v57MyY-3V3y-R7ch5BroBMAqu7yVZ5PGGUw4cASJuCEjEAIGatU0lMyohSyWCUZPScX3m_CmAiajch7_ukQ47ndYutt15omesWmK22_j1Zo_OAw_PTR2tv2IzLRfAjE9Mf6aGWbJqR6dPGb-cZo0Ya2RteFN2fL6MVUxl2Ss9o0Hq_-6pisH-7z2VO8fH5czKbLuGSJ6GOmKM-QCixMBUZVSvJSApasqLDMKE0qCmmVyLQQqQGhgKWAXDBeFDUvkPIxuT3u3bnua0Df6003uHCN1yzlQgKTMgsUHKnSdd47rPXO2a1xew1UHzTqg0Z90Kj_NIbMzTFjEfGfVylkqZD8Fy2Ebqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635712778</pqid></control><display><type>article</type><title>Three-Dimensional Velocity Measurement Using a Dual Axis Millimeter-Wave Interferometric Radar</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Merlo, Jason ; Klinefelter, Eric ; Nanzer, Jeffrey A.</creator><creatorcontrib>Merlo, Jason ; Klinefelter, Eric ; Nanzer, Jeffrey A.</creatorcontrib><description><![CDATA[In this work, a method for directly measuring target velocity in three dimensions using a dual axis correlation interferometric radar is presented. Recent advances have shown that the measurement of a target's angular velocity is possible by correlating the signals measured at spatially diverse aperture locations. By utilizing multiple orthogonal baselines and using conventional Doppler velocity methods to obtain radial velocity, a full 3-D velocity vector can be obtained using only three receive antennas and a single transmitter, without the need for tracking. A 41.8-GHz dual axis interferometric radar with a <inline-formula> <tex-math notation="LaTeX">{7.26\lambda } </tex-math></inline-formula> antenna baseline is presented along with measurements of a target moving parallel to the plane of the radar array, and of a target moving with components of both radial and tangential velocity. These experiments achieved total velocity root-mean-square errors (RMSEs) of 41.01 mm <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{s}^{-1} </tex-math></inline-formula> (10.5%) for a target moving along a plane parallel to the array, and 45.07 mm <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{s}^{-1} </tex-math></inline-formula> (13.5%) for a target moving with components of radial and tangential motion relative to the array; estimated trajectory angle RMSEs of 10.42° and 5.11° were achieved for each experiment.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3124251</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular velocity ; Angular velocity estimation ; Antenna measurements ; Antennas ; interferometric radar ; Interferometry ; Millimeter waves ; millimeter-wave radar ; multidimensional radar ; Radar ; Radar antennas ; Radar arrays ; Radar tracking ; Radial velocity ; Receiving antennas ; Trajectory analysis ; Velocity ; Velocity measurement</subject><ispartof>IEEE transactions on microwave theory and techniques, 2022-03, Vol.70 (3), p.1674-1685</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-29038e05ebad1a9d973c71ec2bdec8004d016d476b56a1591261e3523bbf3be03</cites><orcidid>0000-0002-8187-4724 ; 0000-0002-8096-6600 ; 0000-0002-1209-1312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Merlo, Jason</creatorcontrib><creatorcontrib>Klinefelter, Eric</creatorcontrib><creatorcontrib>Nanzer, Jeffrey A.</creatorcontrib><title>Three-Dimensional Velocity Measurement Using a Dual Axis Millimeter-Wave Interferometric Radar</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[In this work, a method for directly measuring target velocity in three dimensions using a dual axis correlation interferometric radar is presented. Recent advances have shown that the measurement of a target's angular velocity is possible by correlating the signals measured at spatially diverse aperture locations. By utilizing multiple orthogonal baselines and using conventional Doppler velocity methods to obtain radial velocity, a full 3-D velocity vector can be obtained using only three receive antennas and a single transmitter, without the need for tracking. A 41.8-GHz dual axis interferometric radar with a <inline-formula> <tex-math notation="LaTeX">{7.26\lambda } </tex-math></inline-formula> antenna baseline is presented along with measurements of a target moving parallel to the plane of the radar array, and of a target moving with components of both radial and tangential velocity. These experiments achieved total velocity root-mean-square errors (RMSEs) of 41.01 mm <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{s}^{-1} </tex-math></inline-formula> (10.5%) for a target moving along a plane parallel to the array, and 45.07 mm <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{s}^{-1} </tex-math></inline-formula> (13.5%) for a target moving with components of radial and tangential motion relative to the array; estimated trajectory angle RMSEs of 10.42° and 5.11° were achieved for each experiment.]]></description><subject>Angular velocity</subject><subject>Angular velocity estimation</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>interferometric radar</subject><subject>Interferometry</subject><subject>Millimeter waves</subject><subject>millimeter-wave radar</subject><subject>multidimensional radar</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar arrays</subject><subject>Radar tracking</subject><subject>Radial velocity</subject><subject>Receiving antennas</subject><subject>Trajectory analysis</subject><subject>Velocity</subject><subject>Velocity measurement</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKd_gPhS8LkzlzRN8zg2fww2BOn0zZC2V83o2pm04v57MyY-3V3y-R7ch5BroBMAqu7yVZ5PGGUw4cASJuCEjEAIGatU0lMyohSyWCUZPScX3m_CmAiajch7_ukQ47ndYutt15omesWmK22_j1Zo_OAw_PTR2tv2IzLRfAjE9Mf6aGWbJqR6dPGb-cZo0Ya2RteFN2fL6MVUxl2Ss9o0Hq_-6pisH-7z2VO8fH5czKbLuGSJ6GOmKM-QCixMBUZVSvJSApasqLDMKE0qCmmVyLQQqQGhgKWAXDBeFDUvkPIxuT3u3bnua0Df6003uHCN1yzlQgKTMgsUHKnSdd47rPXO2a1xew1UHzTqg0Z90Kj_NIbMzTFjEfGfVylkqZD8Fy2Ebqc</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Merlo, Jason</creator><creator>Klinefelter, Eric</creator><creator>Nanzer, Jeffrey A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8187-4724</orcidid><orcidid>https://orcid.org/0000-0002-8096-6600</orcidid><orcidid>https://orcid.org/0000-0002-1209-1312</orcidid></search><sort><creationdate>20220301</creationdate><title>Three-Dimensional Velocity Measurement Using a Dual Axis Millimeter-Wave Interferometric Radar</title><author>Merlo, Jason ; Klinefelter, Eric ; Nanzer, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-29038e05ebad1a9d973c71ec2bdec8004d016d476b56a1591261e3523bbf3be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular velocity</topic><topic>Angular velocity estimation</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>interferometric radar</topic><topic>Interferometry</topic><topic>Millimeter waves</topic><topic>millimeter-wave radar</topic><topic>multidimensional radar</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar arrays</topic><topic>Radar tracking</topic><topic>Radial velocity</topic><topic>Receiving antennas</topic><topic>Trajectory analysis</topic><topic>Velocity</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlo, Jason</creatorcontrib><creatorcontrib>Klinefelter, Eric</creatorcontrib><creatorcontrib>Nanzer, Jeffrey A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlo, Jason</au><au>Klinefelter, Eric</au><au>Nanzer, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Velocity Measurement Using a Dual Axis Millimeter-Wave Interferometric Radar</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>70</volume><issue>3</issue><spage>1674</spage><epage>1685</epage><pages>1674-1685</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[In this work, a method for directly measuring target velocity in three dimensions using a dual axis correlation interferometric radar is presented. Recent advances have shown that the measurement of a target's angular velocity is possible by correlating the signals measured at spatially diverse aperture locations. By utilizing multiple orthogonal baselines and using conventional Doppler velocity methods to obtain radial velocity, a full 3-D velocity vector can be obtained using only three receive antennas and a single transmitter, without the need for tracking. A 41.8-GHz dual axis interferometric radar with a <inline-formula> <tex-math notation="LaTeX">{7.26\lambda } </tex-math></inline-formula> antenna baseline is presented along with measurements of a target moving parallel to the plane of the radar array, and of a target moving with components of both radial and tangential velocity. These experiments achieved total velocity root-mean-square errors (RMSEs) of 41.01 mm <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{s}^{-1} </tex-math></inline-formula> (10.5%) for a target moving along a plane parallel to the array, and 45.07 mm <inline-formula> <tex-math notation="LaTeX">\cdot \,\,\text{s}^{-1} </tex-math></inline-formula> (13.5%) for a target moving with components of radial and tangential motion relative to the array; estimated trajectory angle RMSEs of 10.42° and 5.11° were achieved for each experiment.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3124251</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8187-4724</orcidid><orcidid>https://orcid.org/0000-0002-8096-6600</orcidid><orcidid>https://orcid.org/0000-0002-1209-1312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2022-03, Vol.70 (3), p.1674-1685 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_2635712778 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Angular velocity Angular velocity estimation Antenna measurements Antennas interferometric radar Interferometry Millimeter waves millimeter-wave radar multidimensional radar Radar Radar antennas Radar arrays Radar tracking Radial velocity Receiving antennas Trajectory analysis Velocity Velocity measurement |
title | Three-Dimensional Velocity Measurement Using a Dual Axis Millimeter-Wave Interferometric Radar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Velocity%20Measurement%20Using%20a%20Dual%20Axis%20Millimeter-Wave%20Interferometric%20Radar&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Merlo,%20Jason&rft.date=2022-03-01&rft.volume=70&rft.issue=3&rft.spage=1674&rft.epage=1685&rft.pages=1674-1685&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3124251&rft_dat=%3Cproquest_cross%3E2635712778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-29038e05ebad1a9d973c71ec2bdec8004d016d476b56a1591261e3523bbf3be03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635712778&rft_id=info:pmid/&rft_ieee_id=9618657&rfr_iscdi=true |