Loading…

On the rainbow antimagic coloring of vertex amalgamation of graphs

The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The mi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2022-01, Vol.2157 (1), p.12014
Main Authors: Joedo, J C, Dafik, Kristiana, A I, Agustin, I H, Nisviasari, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803
cites cdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803
container_end_page
container_issue 1
container_start_page 12014
container_title Journal of physics. Conference series
container_volume 2157
creator Joedo, J C
Dafik
Kristiana, A I
Agustin, I H
Nisviasari, R
description The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights w ( x ) ≠ w ( y ) for any two vertices x and y is the definition of the rainbow antimagic connection number rac ( G ). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained rac ( G ) where G is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.
doi_str_mv 10.1088/1742-6596/2157/1/012014
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2635868059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635868059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouK4-gwHvhNokbZrkUhePLKygXockTbpddpuadD28vS2VFUEwF5Nh5v9nmA-AU4wuMOI8xSwnSUFFkRJMWYpThAnC-R6Y7Dr7u5zzQ3AU4wqhrH9sAq4WDeyWFgZVN9q_Q9V09UZVtYHGr32omwp6B99s6OwHVBu1rvrQ1b4ZylVQ7TIegwOn1tGefP9T8HJz_Ty7S-aL2_vZ5TwxGeF5ogQ2WFFcOiJ0aThGlFiCHNfEaG1s4UpWKO4wY1powkqbi1zQnFFiOOEom4KzcW4b_OvWxk6u_DY0_UpJiozygiMqehUbVSb4GIN1sg39ReFTYiQHYHJAIQcscgAmsRyB9c5sdNa-_Rn9v-v8D9fD4-zpt1C2pcu-AFFtees</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635868059</pqid></control><display><type>article</type><title>On the rainbow antimagic coloring of vertex amalgamation of graphs</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Joedo, J C ; Dafik ; Kristiana, A I ; Agustin, I H ; Nisviasari, R</creator><creatorcontrib>Joedo, J C ; Dafik ; Kristiana, A I ; Agustin, I H ; Nisviasari, R</creatorcontrib><description>The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights w ( x ) ≠ w ( y ) for any two vertices x and y is the definition of the rainbow antimagic connection number rac ( G ). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained rac ( G ) where G is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2157/1/012014</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amalgamation ; Apexes ; Coloring ; Graph theory ; Graphs ; Labels ; Physics</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2157 (1), p.12014</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</citedby><cites>FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2635868059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Joedo, J C</creatorcontrib><creatorcontrib>Dafik</creatorcontrib><creatorcontrib>Kristiana, A I</creatorcontrib><creatorcontrib>Agustin, I H</creatorcontrib><creatorcontrib>Nisviasari, R</creatorcontrib><title>On the rainbow antimagic coloring of vertex amalgamation of graphs</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights w ( x ) ≠ w ( y ) for any two vertices x and y is the definition of the rainbow antimagic connection number rac ( G ). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained rac ( G ) where G is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.</description><subject>Amalgamation</subject><subject>Apexes</subject><subject>Coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Labels</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkNtKxDAQhoMouK4-gwHvhNokbZrkUhePLKygXockTbpddpuadD28vS2VFUEwF5Nh5v9nmA-AU4wuMOI8xSwnSUFFkRJMWYpThAnC-R6Y7Dr7u5zzQ3AU4wqhrH9sAq4WDeyWFgZVN9q_Q9V09UZVtYHGr32omwp6B99s6OwHVBu1rvrQ1b4ZylVQ7TIegwOn1tGefP9T8HJz_Ty7S-aL2_vZ5TwxGeF5ogQ2WFFcOiJ0aThGlFiCHNfEaG1s4UpWKO4wY1powkqbi1zQnFFiOOEom4KzcW4b_OvWxk6u_DY0_UpJiozygiMqehUbVSb4GIN1sg39ReFTYiQHYHJAIQcscgAmsRyB9c5sdNa-_Rn9v-v8D9fD4-zpt1C2pcu-AFFtees</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Joedo, J C</creator><creator>Dafik</creator><creator>Kristiana, A I</creator><creator>Agustin, I H</creator><creator>Nisviasari, R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>On the rainbow antimagic coloring of vertex amalgamation of graphs</title><author>Joedo, J C ; Dafik ; Kristiana, A I ; Agustin, I H ; Nisviasari, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amalgamation</topic><topic>Apexes</topic><topic>Coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Labels</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joedo, J C</creatorcontrib><creatorcontrib>Dafik</creatorcontrib><creatorcontrib>Kristiana, A I</creatorcontrib><creatorcontrib>Agustin, I H</creatorcontrib><creatorcontrib>Nisviasari, R</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joedo, J C</au><au>Dafik</au><au>Kristiana, A I</au><au>Agustin, I H</au><au>Nisviasari, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the rainbow antimagic coloring of vertex amalgamation of graphs</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2157</volume><issue>1</issue><spage>12014</spage><pages>12014-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights w ( x ) ≠ w ( y ) for any two vertices x and y is the definition of the rainbow antimagic connection number rac ( G ). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained rac ( G ) where G is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2157/1/012014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-01, Vol.2157 (1), p.12014
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2635868059
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Amalgamation
Apexes
Coloring
Graph theory
Graphs
Labels
Physics
title On the rainbow antimagic coloring of vertex amalgamation of graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20rainbow%20antimagic%20coloring%20of%20vertex%20amalgamation%20of%20graphs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Joedo,%20J%20C&rft.date=2022-01-01&rft.volume=2157&rft.issue=1&rft.spage=12014&rft.pages=12014-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2157/1/012014&rft_dat=%3Cproquest_iop_j%3E2635868059%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635868059&rft_id=info:pmid/&rfr_iscdi=true