Loading…
On the rainbow antimagic coloring of vertex amalgamation of graphs
The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph G is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The mi...
Saved in:
Published in: | Journal of physics. Conference series 2022-01, Vol.2157 (1), p.12014 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803 |
---|---|
cites | cdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803 |
container_end_page | |
container_issue | 1 |
container_start_page | 12014 |
container_title | Journal of physics. Conference series |
container_volume | 2157 |
creator | Joedo, J C Dafik Kristiana, A I Agustin, I H Nisviasari, R |
description | The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph
G
is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights
w
(
x
) ≠
w
(
y
) for any two vertices
x
and
y
is the definition of the rainbow antimagic connection number
rac
(
G
). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained
rac
(
G
) where
G
is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph. |
doi_str_mv | 10.1088/1742-6596/2157/1/012014 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2635868059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635868059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouK4-gwHvhNokbZrkUhePLKygXockTbpddpuadD28vS2VFUEwF5Nh5v9nmA-AU4wuMOI8xSwnSUFFkRJMWYpThAnC-R6Y7Dr7u5zzQ3AU4wqhrH9sAq4WDeyWFgZVN9q_Q9V09UZVtYHGr32omwp6B99s6OwHVBu1rvrQ1b4ZylVQ7TIegwOn1tGefP9T8HJz_Ty7S-aL2_vZ5TwxGeF5ogQ2WFFcOiJ0aThGlFiCHNfEaG1s4UpWKO4wY1powkqbi1zQnFFiOOEom4KzcW4b_OvWxk6u_DY0_UpJiozygiMqehUbVSb4GIN1sg39ReFTYiQHYHJAIQcscgAmsRyB9c5sdNa-_Rn9v-v8D9fD4-zpt1C2pcu-AFFtees</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635868059</pqid></control><display><type>article</type><title>On the rainbow antimagic coloring of vertex amalgamation of graphs</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Joedo, J C ; Dafik ; Kristiana, A I ; Agustin, I H ; Nisviasari, R</creator><creatorcontrib>Joedo, J C ; Dafik ; Kristiana, A I ; Agustin, I H ; Nisviasari, R</creatorcontrib><description>The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph
G
is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights
w
(
x
) ≠
w
(
y
) for any two vertices
x
and
y
is the definition of the rainbow antimagic connection number
rac
(
G
). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained
rac
(
G
) where
G
is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2157/1/012014</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amalgamation ; Apexes ; Coloring ; Graph theory ; Graphs ; Labels ; Physics</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2157 (1), p.12014</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</citedby><cites>FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2635868059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Joedo, J C</creatorcontrib><creatorcontrib>Dafik</creatorcontrib><creatorcontrib>Kristiana, A I</creatorcontrib><creatorcontrib>Agustin, I H</creatorcontrib><creatorcontrib>Nisviasari, R</creatorcontrib><title>On the rainbow antimagic coloring of vertex amalgamation of graphs</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph
G
is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights
w
(
x
) ≠
w
(
y
) for any two vertices
x
and
y
is the definition of the rainbow antimagic connection number
rac
(
G
). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained
rac
(
G
) where
G
is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.</description><subject>Amalgamation</subject><subject>Apexes</subject><subject>Coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Labels</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkNtKxDAQhoMouK4-gwHvhNokbZrkUhePLKygXockTbpddpuadD28vS2VFUEwF5Nh5v9nmA-AU4wuMOI8xSwnSUFFkRJMWYpThAnC-R6Y7Dr7u5zzQ3AU4wqhrH9sAq4WDeyWFgZVN9q_Q9V09UZVtYHGr32omwp6B99s6OwHVBu1rvrQ1b4ZylVQ7TIegwOn1tGefP9T8HJz_Ty7S-aL2_vZ5TwxGeF5ogQ2WFFcOiJ0aThGlFiCHNfEaG1s4UpWKO4wY1powkqbi1zQnFFiOOEom4KzcW4b_OvWxk6u_DY0_UpJiozygiMqehUbVSb4GIN1sg39ReFTYiQHYHJAIQcscgAmsRyB9c5sdNa-_Rn9v-v8D9fD4-zpt1C2pcu-AFFtees</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Joedo, J C</creator><creator>Dafik</creator><creator>Kristiana, A I</creator><creator>Agustin, I H</creator><creator>Nisviasari, R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>On the rainbow antimagic coloring of vertex amalgamation of graphs</title><author>Joedo, J C ; Dafik ; Kristiana, A I ; Agustin, I H ; Nisviasari, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amalgamation</topic><topic>Apexes</topic><topic>Coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Labels</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joedo, J C</creatorcontrib><creatorcontrib>Dafik</creatorcontrib><creatorcontrib>Kristiana, A I</creatorcontrib><creatorcontrib>Agustin, I H</creatorcontrib><creatorcontrib>Nisviasari, R</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joedo, J C</au><au>Dafik</au><au>Kristiana, A I</au><au>Agustin, I H</au><au>Nisviasari, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the rainbow antimagic coloring of vertex amalgamation of graphs</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2157</volume><issue>1</issue><spage>12014</spage><pages>12014-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The purpose of this study is to develop rainbow antimagic coloring. This study is a combination of two notions, namely antimagic and rainbow concept. If every vertex of graph
G
is labeled with the antimagic labels and then edge weight of antimagic labels are used to assign a rainbow coloring. The minimum number of colors for a rainbow path to exist with the condition satisfying the edge weights
w
(
x
) ≠
w
(
y
) for any two vertices
x
and
y
is the definition of the rainbow antimagic connection number
rac
(
G
). In this study, we use connected graphs and simple graphs in obtaining the rainbow antimagic connection number. This paper will explain the rainbow antimagic coloring on some graphs and get their formula of the rainbow antimagic connection number. We have obtained
rac
(
G
) where
G
is vertex amalgamation of graphs, namely path, star, broom, paw, fan, and triangular book graph.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2157/1/012014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-01, Vol.2157 (1), p.12014 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2635868059 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Amalgamation Apexes Coloring Graph theory Graphs Labels Physics |
title | On the rainbow antimagic coloring of vertex amalgamation of graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20rainbow%20antimagic%20coloring%20of%20vertex%20amalgamation%20of%20graphs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Joedo,%20J%20C&rft.date=2022-01-01&rft.volume=2157&rft.issue=1&rft.spage=12014&rft.pages=12014-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2157/1/012014&rft_dat=%3Cproquest_iop_j%3E2635868059%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3284-a91c1a51df29bdc81052e20f8b2cbbce6fd76a8f177b9b27de494954752c82803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635868059&rft_id=info:pmid/&rfr_iscdi=true |