Loading…
Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity
Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system invo...
Saved in:
Published in: | Journal of physics. Conference series 2022-01, Vol.2173 (1), p.12024 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93 |
container_end_page | |
container_issue | 1 |
container_start_page | 12024 |
container_title | Journal of physics. Conference series |
container_volume | 2173 |
creator | Peng, Pai Huang, ChunQing |
description | Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples. |
doi_str_mv | 10.1088/1742-6596/2173/1/012024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635869755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635869755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFafwYB3Qsyed3NZ6pl6gOr1MiYbu6XNxt30om9vYqQiCM7NzDD_PzN8CJ0SfEGw1hlRnKZS5DKjRLGMZJhQTPkeGu0m-7ta60N0FOMSY9aFGqHZpW1tWLvaxdYVCdRlMm99sYCv9sGXduXq92TSNMFDsbAxqXxI5tBuArTO18mjrzuFheDa7TE6qGAV7cl3HqPX66uX6W06e7q5m05maUEV5ykokCx_K5W20oruP8YqTgnmUApFMRM4lxoEhVxyW2IqJa1yAaS0WnAocjZGZ8Pe7qmPjY2tWfpNqLuThkomtMyVEJ1KDaoi-BiDrUwT3BrC1hBsenSmh2J6QKZHZ4gZ0HVONjidb35W_-86_8N1_zyd_xaapqzYJ_f6fSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635869755</pqid></control><display><type>article</type><title>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Peng, Pai ; Huang, ChunQing</creator><creatorcontrib>Peng, Pai ; Huang, ChunQing</creatorcontrib><description>Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2173/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Closed loop systems ; Feedback control ; Impulse response ; Nonlinearity ; Physics ; Saturation ; Stochastic models</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2173 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2635869755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Peng, Pai</creatorcontrib><creatorcontrib>Huang, ChunQing</creatorcontrib><title>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.</description><subject>Algorithms</subject><subject>Closed loop systems</subject><subject>Feedback control</subject><subject>Impulse response</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Saturation</subject><subject>Stochastic models</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkNtKw0AQhhdRsFafwYB3Qsyed3NZ6pl6gOr1MiYbu6XNxt30om9vYqQiCM7NzDD_PzN8CJ0SfEGw1hlRnKZS5DKjRLGMZJhQTPkeGu0m-7ta60N0FOMSY9aFGqHZpW1tWLvaxdYVCdRlMm99sYCv9sGXduXq92TSNMFDsbAxqXxI5tBuArTO18mjrzuFheDa7TE6qGAV7cl3HqPX66uX6W06e7q5m05maUEV5ykokCx_K5W20oruP8YqTgnmUApFMRM4lxoEhVxyW2IqJa1yAaS0WnAocjZGZ8Pe7qmPjY2tWfpNqLuThkomtMyVEJ1KDaoi-BiDrUwT3BrC1hBsenSmh2J6QKZHZ4gZ0HVONjidb35W_-86_8N1_zyd_xaapqzYJ_f6fSk</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Peng, Pai</creator><creator>Huang, ChunQing</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</title><author>Peng, Pai ; Huang, ChunQing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Closed loop systems</topic><topic>Feedback control</topic><topic>Impulse response</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Saturation</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Pai</creatorcontrib><creatorcontrib>Huang, ChunQing</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Pai</au><au>Huang, ChunQing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2173</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2173/1/012024</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-01, Vol.2173 (1), p.12024 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2635869755 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest) |
subjects | Algorithms Closed loop systems Feedback control Impulse response Nonlinearity Physics Saturation Stochastic models |
title | Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20and%20Stochastic%20Modeling%20Approaches%20for%20Saturation%20Nonlinearity&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Peng,%20Pai&rft.date=2022-01-01&rft.volume=2173&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2173/1/012024&rft_dat=%3Cproquest_cross%3E2635869755%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635869755&rft_id=info:pmid/&rfr_iscdi=true |