Loading…

Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity

Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system invo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2022-01, Vol.2173 (1), p.12024
Main Authors: Peng, Pai, Huang, ChunQing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93
container_end_page
container_issue 1
container_start_page 12024
container_title Journal of physics. Conference series
container_volume 2173
creator Peng, Pai
Huang, ChunQing
description Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.
doi_str_mv 10.1088/1742-6596/2173/1/012024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635869755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635869755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFafwYB3Qsyed3NZ6pl6gOr1MiYbu6XNxt30om9vYqQiCM7NzDD_PzN8CJ0SfEGw1hlRnKZS5DKjRLGMZJhQTPkeGu0m-7ta60N0FOMSY9aFGqHZpW1tWLvaxdYVCdRlMm99sYCv9sGXduXq92TSNMFDsbAxqXxI5tBuArTO18mjrzuFheDa7TE6qGAV7cl3HqPX66uX6W06e7q5m05maUEV5ykokCx_K5W20oruP8YqTgnmUApFMRM4lxoEhVxyW2IqJa1yAaS0WnAocjZGZ8Pe7qmPjY2tWfpNqLuThkomtMyVEJ1KDaoi-BiDrUwT3BrC1hBsenSmh2J6QKZHZ4gZ0HVONjidb35W_-86_8N1_zyd_xaapqzYJ_f6fSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635869755</pqid></control><display><type>article</type><title>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Peng, Pai ; Huang, ChunQing</creator><creatorcontrib>Peng, Pai ; Huang, ChunQing</creatorcontrib><description>Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2173/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Closed loop systems ; Feedback control ; Impulse response ; Nonlinearity ; Physics ; Saturation ; Stochastic models</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2173 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2635869755?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Peng, Pai</creatorcontrib><creatorcontrib>Huang, ChunQing</creatorcontrib><title>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.</description><subject>Algorithms</subject><subject>Closed loop systems</subject><subject>Feedback control</subject><subject>Impulse response</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Saturation</subject><subject>Stochastic models</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkNtKw0AQhhdRsFafwYB3Qsyed3NZ6pl6gOr1MiYbu6XNxt30om9vYqQiCM7NzDD_PzN8CJ0SfEGw1hlRnKZS5DKjRLGMZJhQTPkeGu0m-7ta60N0FOMSY9aFGqHZpW1tWLvaxdYVCdRlMm99sYCv9sGXduXq92TSNMFDsbAxqXxI5tBuArTO18mjrzuFheDa7TE6qGAV7cl3HqPX66uX6W06e7q5m05maUEV5ykokCx_K5W20oruP8YqTgnmUApFMRM4lxoEhVxyW2IqJa1yAaS0WnAocjZGZ8Pe7qmPjY2tWfpNqLuThkomtMyVEJ1KDaoi-BiDrUwT3BrC1hBsenSmh2J6QKZHZ4gZ0HVONjidb35W_-86_8N1_zyd_xaapqzYJ_f6fSk</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Peng, Pai</creator><creator>Huang, ChunQing</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</title><author>Peng, Pai ; Huang, ChunQing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Closed loop systems</topic><topic>Feedback control</topic><topic>Impulse response</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Saturation</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Pai</creatorcontrib><creatorcontrib>Huang, ChunQing</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Pai</au><au>Huang, ChunQing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2173</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Being different from the most traditional methods of nonlinearity modelling, non-parametric modelling approaches viz. deterministic and stochastic approaches for saturation nonlinearity are proposed in the sense of system impulse response. Based on deterministic approach, the closed-loop system involved saturation nonlinearity can be modelled as the response of the closed-loop system that is subject to impulse stimulation. Alternatively, the closed-loop system involved saturation nonlinearity can be modelled in stochastic manner, in which the impulse response coefficients are estimated by the FCOR algorithm. Moreover, it shows some linear relationship of the impulse response coefficients between different saturation ratios in both the deterministic and stochastic models. This is illustrated by three different numerical examples.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2173/1/012024</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-01, Vol.2173 (1), p.12024
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2635869755
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
subjects Algorithms
Closed loop systems
Feedback control
Impulse response
Nonlinearity
Physics
Saturation
Stochastic models
title Deterministic and Stochastic Modeling Approaches for Saturation Nonlinearity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20and%20Stochastic%20Modeling%20Approaches%20for%20Saturation%20Nonlinearity&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Peng,%20Pai&rft.date=2022-01-01&rft.volume=2173&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2173/1/012024&rft_dat=%3Cproquest_cross%3E2635869755%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2744-a7a639bd78e6e559633f42104ad5720350968a52a964ed02662f95a1de854ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635869755&rft_id=info:pmid/&rfr_iscdi=true