Loading…
Stability analysis for fractional order implicit ψ‐Hilfer differential equations
The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We p...
Saved in:
Published in: | Mathematical methods in the applied sciences 2022-03, Vol.45 (5), p.2701-2712 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3 |
container_end_page | 2712 |
container_issue | 5 |
container_start_page | 2701 |
container_title | Mathematical methods in the applied sciences |
container_volume | 45 |
creator | Asma Gómez‐Aguilar, José Francisco Rahman, Ghaus Javed, Maryam |
description | The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results. |
doi_str_mv | 10.1002/mma.7948 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636174496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636174496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKvgJwy4cTP1vSROkmUpagWLi-o6ZGYSSJnptMkUmZ1Ll_6Z_-CXmFq3ri5czntcDiGXCBMEoDdtayZCcXlERghK5chFcUxGgAJyTpGfkrMYVwAgEemILJe9KX3j-yEza9MM0cfMdSFzwVS971KVdaG2IfPtpvGV77Ovj-_3z7lvXCpr71LYde8TZ7c7sz-J5-TEmSbai78ck9f7u5fZPH96fnicTZ_yiiomcyGAWSakcoASq6IUwMHUJeMSVaUUuLRQUl7KkmJhKdZCMGENvQUj0Vk2JleHv5vQbXc29nrV7UKaHDUtWIGCc1Uk6vpAVaGLMVinN8G3JgwaQe-V6aRM75UlND-gb76xw7-cXiymv_wP1QJt3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636174496</pqid></control><display><type>article</type><title>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Asma ; Gómez‐Aguilar, José Francisco ; Rahman, Ghaus ; Javed, Maryam</creator><creatorcontrib>Asma ; Gómez‐Aguilar, José Francisco ; Rahman, Ghaus ; Javed, Maryam</creatorcontrib><description>The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7948</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Differential equations ; existence of solution ; Gronwall inequality ; Operators (mathematics) ; Stability analysis ; Ulam Hyers Mittag Leffler ; ψ‐Hilfer derivative</subject><ispartof>Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2701-2712</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</citedby><cites>FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</cites><orcidid>0000-0002-0988-2455 ; 0000-0001-9403-3767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Asma</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Rahman, Ghaus</creatorcontrib><creatorcontrib>Javed, Maryam</creatorcontrib><title>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</title><title>Mathematical methods in the applied sciences</title><description>The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.</description><subject>Differential equations</subject><subject>existence of solution</subject><subject>Gronwall inequality</subject><subject>Operators (mathematics)</subject><subject>Stability analysis</subject><subject>Ulam Hyers Mittag Leffler</subject><subject>ψ‐Hilfer derivative</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKvgJwy4cTP1vSROkmUpagWLi-o6ZGYSSJnptMkUmZ1Ll_6Z_-CXmFq3ri5czntcDiGXCBMEoDdtayZCcXlERghK5chFcUxGgAJyTpGfkrMYVwAgEemILJe9KX3j-yEza9MM0cfMdSFzwVS971KVdaG2IfPtpvGV77Ovj-_3z7lvXCpr71LYde8TZ7c7sz-J5-TEmSbai78ck9f7u5fZPH96fnicTZ_yiiomcyGAWSakcoASq6IUwMHUJeMSVaUUuLRQUl7KkmJhKdZCMGENvQUj0Vk2JleHv5vQbXc29nrV7UKaHDUtWIGCc1Uk6vpAVaGLMVinN8G3JgwaQe-V6aRM75UlND-gb76xw7-cXiymv_wP1QJt3w</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Asma</creator><creator>Gómez‐Aguilar, José Francisco</creator><creator>Rahman, Ghaus</creator><creator>Javed, Maryam</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0988-2455</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></search><sort><creationdate>20220330</creationdate><title>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</title><author>Asma ; Gómez‐Aguilar, José Francisco ; Rahman, Ghaus ; Javed, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential equations</topic><topic>existence of solution</topic><topic>Gronwall inequality</topic><topic>Operators (mathematics)</topic><topic>Stability analysis</topic><topic>Ulam Hyers Mittag Leffler</topic><topic>ψ‐Hilfer derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asma</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Rahman, Ghaus</creatorcontrib><creatorcontrib>Javed, Maryam</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asma</au><au>Gómez‐Aguilar, José Francisco</au><au>Rahman, Ghaus</au><au>Javed, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>45</volume><issue>5</issue><spage>2701</spage><epage>2712</epage><pages>2701-2712</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7948</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0988-2455</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2701-2712 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2636174496 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Differential equations existence of solution Gronwall inequality Operators (mathematics) Stability analysis Ulam Hyers Mittag Leffler ψ‐Hilfer derivative |
title | Stability analysis for fractional order implicit ψ‐Hilfer differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20fractional%20order%20implicit%20%CF%88%E2%80%90Hilfer%20differential%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Asma&rft.date=2022-03-30&rft.volume=45&rft.issue=5&rft.spage=2701&rft.epage=2712&rft.pages=2701-2712&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7948&rft_dat=%3Cproquest_cross%3E2636174496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636174496&rft_id=info:pmid/&rfr_iscdi=true |