Loading…

Stability analysis for fractional order implicit ψ‐Hilfer differential equations

The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We p...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2022-03, Vol.45 (5), p.2701-2712
Main Authors: Asma, Gómez‐Aguilar, José Francisco, Rahman, Ghaus, Javed, Maryam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3
cites cdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3
container_end_page 2712
container_issue 5
container_start_page 2701
container_title Mathematical methods in the applied sciences
container_volume 45
creator Asma
Gómez‐Aguilar, José Francisco
Rahman, Ghaus
Javed, Maryam
description The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.
doi_str_mv 10.1002/mma.7948
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636174496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636174496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKvgJwy4cTP1vSROkmUpagWLi-o6ZGYSSJnptMkUmZ1Ll_6Z_-CXmFq3ri5czntcDiGXCBMEoDdtayZCcXlERghK5chFcUxGgAJyTpGfkrMYVwAgEemILJe9KX3j-yEza9MM0cfMdSFzwVS971KVdaG2IfPtpvGV77Ovj-_3z7lvXCpr71LYde8TZ7c7sz-J5-TEmSbai78ck9f7u5fZPH96fnicTZ_yiiomcyGAWSakcoASq6IUwMHUJeMSVaUUuLRQUl7KkmJhKdZCMGENvQUj0Vk2JleHv5vQbXc29nrV7UKaHDUtWIGCc1Uk6vpAVaGLMVinN8G3JgwaQe-V6aRM75UlND-gb76xw7-cXiymv_wP1QJt3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636174496</pqid></control><display><type>article</type><title>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Asma ; Gómez‐Aguilar, José Francisco ; Rahman, Ghaus ; Javed, Maryam</creator><creatorcontrib>Asma ; Gómez‐Aguilar, José Francisco ; Rahman, Ghaus ; Javed, Maryam</creatorcontrib><description>The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7948</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Differential equations ; existence of solution ; Gronwall inequality ; Operators (mathematics) ; Stability analysis ; Ulam Hyers Mittag Leffler ; ψ‐Hilfer derivative</subject><ispartof>Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2701-2712</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</citedby><cites>FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</cites><orcidid>0000-0002-0988-2455 ; 0000-0001-9403-3767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Asma</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Rahman, Ghaus</creatorcontrib><creatorcontrib>Javed, Maryam</creatorcontrib><title>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</title><title>Mathematical methods in the applied sciences</title><description>The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.</description><subject>Differential equations</subject><subject>existence of solution</subject><subject>Gronwall inequality</subject><subject>Operators (mathematics)</subject><subject>Stability analysis</subject><subject>Ulam Hyers Mittag Leffler</subject><subject>ψ‐Hilfer derivative</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKvgJwy4cTP1vSROkmUpagWLi-o6ZGYSSJnptMkUmZ1Ll_6Z_-CXmFq3ri5czntcDiGXCBMEoDdtayZCcXlERghK5chFcUxGgAJyTpGfkrMYVwAgEemILJe9KX3j-yEza9MM0cfMdSFzwVS971KVdaG2IfPtpvGV77Ovj-_3z7lvXCpr71LYde8TZ7c7sz-J5-TEmSbai78ck9f7u5fZPH96fnicTZ_yiiomcyGAWSakcoASq6IUwMHUJeMSVaUUuLRQUl7KkmJhKdZCMGENvQUj0Vk2JleHv5vQbXc29nrV7UKaHDUtWIGCc1Uk6vpAVaGLMVinN8G3JgwaQe-V6aRM75UlND-gb76xw7-cXiymv_wP1QJt3w</recordid><startdate>20220330</startdate><enddate>20220330</enddate><creator>Asma</creator><creator>Gómez‐Aguilar, José Francisco</creator><creator>Rahman, Ghaus</creator><creator>Javed, Maryam</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0988-2455</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></search><sort><creationdate>20220330</creationdate><title>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</title><author>Asma ; Gómez‐Aguilar, José Francisco ; Rahman, Ghaus ; Javed, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential equations</topic><topic>existence of solution</topic><topic>Gronwall inequality</topic><topic>Operators (mathematics)</topic><topic>Stability analysis</topic><topic>Ulam Hyers Mittag Leffler</topic><topic>ψ‐Hilfer derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asma</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Rahman, Ghaus</creatorcontrib><creatorcontrib>Javed, Maryam</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asma</au><au>Gómez‐Aguilar, José Francisco</au><au>Rahman, Ghaus</au><au>Javed, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for fractional order implicit ψ‐Hilfer differential equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-03-30</date><risdate>2022</risdate><volume>45</volume><issue>5</issue><spage>2701</spage><epage>2712</epage><pages>2701-2712</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The present research endeavor contains formulation of a new ψ‐Hilfer differential equation equipped with integral‐type subsidiary conditions. Utilizing Picard operator method, Banach contraction principle, and Gronwall inequality, we explore solution's properties of the underlying problem. We provide some assumptions to set up results related to uniqueness of solution for the underlying model. Furthermore, stability analysis is studied in the sense of Ulam Hyers Mittag Leffler's definition. We furnish illustrative examples for the vindication of our obtained analytical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7948</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0988-2455</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-03, Vol.45 (5), p.2701-2712
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2636174496
source Wiley-Blackwell Read & Publish Collection
subjects Differential equations
existence of solution
Gronwall inequality
Operators (mathematics)
Stability analysis
Ulam Hyers Mittag Leffler
ψ‐Hilfer derivative
title Stability analysis for fractional order implicit ψ‐Hilfer differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20fractional%20order%20implicit%20%CF%88%E2%80%90Hilfer%20differential%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Asma&rft.date=2022-03-30&rft.volume=45&rft.issue=5&rft.spage=2701&rft.epage=2712&rft.pages=2701-2712&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7948&rft_dat=%3Cproquest_cross%3E2636174496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2938-7703e3789f0181c6b7040adb34819c990f112824b8b216e21d7737ea250a81fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636174496&rft_id=info:pmid/&rfr_iscdi=true