Loading…
Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons
D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a...
Saved in:
Published in: | Angewandte Chemie 2022-03, Vol.134 (12), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583 |
---|---|
cites | cdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 134 |
creator | Lin, Huan Wang, Junhui Zhao, Jiwu Zhuang, Yan Liu, Bingqian Zhu, Yujiao Jia, Huaping Wu, Kaifeng Shen, Jinni Fu, Xianzhi Zhang, Xuming Long, Jinlin |
description | D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm.
The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2. |
doi_str_mv | 10.1002/ange.202117645 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636344312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636344312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5RyJc4p_Ejs5VqW0lUpBAs6R7WzaIDcOdlLIjUfgGXkSUhXBkdPuSvPNagahS4JHBGN6Las1jCimhAgexUdoQGJKQiZicYwGGEdRmNAoPUVn3r9gjDkV6QDt7qwB3Rrpgpuy7vevj89Flbca8uBhYxvrILfvwUQ20nS-9EFhXTDvcmfXUAXTnTVtU9oqsDtwwSOYoufH3sNWmd5hJetNs5Gm3JY59FdlXamUrfw5Oimk8XDxM4fo-Xb6NJmHy_vZYjJehroPEoccK1VQxlKaAE2TPNe6iDVwoEpwLaRghGgaYZYWiutcKyIoqIRgxrGQccKG6OrgWzv72oJvshfbuqp_mVHOOIsiRmivGh1U2lnvHRRZ7cqtdF1GcLbvNtt3m_122wPpAXgrDXT_qLPxajb9Y78B8SqBrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636344312</pqid></control><display><type>article</type><title>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lin, Huan ; Wang, Junhui ; Zhao, Jiwu ; Zhuang, Yan ; Liu, Bingqian ; Zhu, Yujiao ; Jia, Huaping ; Wu, Kaifeng ; Shen, Jinni ; Fu, Xianzhi ; Zhang, Xuming ; Long, Jinlin</creator><creatorcontrib>Lin, Huan ; Wang, Junhui ; Zhao, Jiwu ; Zhuang, Yan ; Liu, Bingqian ; Zhu, Yujiao ; Jia, Huaping ; Wu, Kaifeng ; Shen, Jinni ; Fu, Xianzhi ; Zhang, Xuming ; Long, Jinlin</creatorcontrib><description>D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm.
The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202117645</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Catalysis ; Catalysts ; Charge transfer ; Chemistry ; Dipole moments ; Electronics industry ; Excitons ; Free electrons ; Hydrogen Evolution ; Molecular Dipole ; Nanoribbons ; Naphthalimide ; Organic semiconductors ; Photocatalysis ; Photoexcitation ; Photoredox catalysis ; Protons ; Quantum efficiency ; Self-Assembly ; Separation</subject><ispartof>Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</citedby><cites>FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</cites><orcidid>0000-0002-3675-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Huan</creatorcontrib><creatorcontrib>Wang, Junhui</creatorcontrib><creatorcontrib>Zhao, Jiwu</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Liu, Bingqian</creatorcontrib><creatorcontrib>Zhu, Yujiao</creatorcontrib><creatorcontrib>Jia, Huaping</creatorcontrib><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>Shen, Jinni</creatorcontrib><creatorcontrib>Fu, Xianzhi</creatorcontrib><creatorcontrib>Zhang, Xuming</creatorcontrib><creatorcontrib>Long, Jinlin</creatorcontrib><title>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</title><title>Angewandte Chemie</title><description>D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm.
The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.</description><subject>Aqueous solutions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Dipole moments</subject><subject>Electronics industry</subject><subject>Excitons</subject><subject>Free electrons</subject><subject>Hydrogen Evolution</subject><subject>Molecular Dipole</subject><subject>Nanoribbons</subject><subject>Naphthalimide</subject><subject>Organic semiconductors</subject><subject>Photocatalysis</subject><subject>Photoexcitation</subject><subject>Photoredox catalysis</subject><subject>Protons</subject><subject>Quantum efficiency</subject><subject>Self-Assembly</subject><subject>Separation</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5RyJc4p_Ejs5VqW0lUpBAs6R7WzaIDcOdlLIjUfgGXkSUhXBkdPuSvPNagahS4JHBGN6Las1jCimhAgexUdoQGJKQiZicYwGGEdRmNAoPUVn3r9gjDkV6QDt7qwB3Rrpgpuy7vevj89Flbca8uBhYxvrILfvwUQ20nS-9EFhXTDvcmfXUAXTnTVtU9oqsDtwwSOYoufH3sNWmd5hJetNs5Gm3JY59FdlXamUrfw5Oimk8XDxM4fo-Xb6NJmHy_vZYjJehroPEoccK1VQxlKaAE2TPNe6iDVwoEpwLaRghGgaYZYWiutcKyIoqIRgxrGQccKG6OrgWzv72oJvshfbuqp_mVHOOIsiRmivGh1U2lnvHRRZ7cqtdF1GcLbvNtt3m_122wPpAXgrDXT_qLPxajb9Y78B8SqBrA</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Lin, Huan</creator><creator>Wang, Junhui</creator><creator>Zhao, Jiwu</creator><creator>Zhuang, Yan</creator><creator>Liu, Bingqian</creator><creator>Zhu, Yujiao</creator><creator>Jia, Huaping</creator><creator>Wu, Kaifeng</creator><creator>Shen, Jinni</creator><creator>Fu, Xianzhi</creator><creator>Zhang, Xuming</creator><creator>Long, Jinlin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3675-0941</orcidid></search><sort><creationdate>20220314</creationdate><title>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</title><author>Lin, Huan ; Wang, Junhui ; Zhao, Jiwu ; Zhuang, Yan ; Liu, Bingqian ; Zhu, Yujiao ; Jia, Huaping ; Wu, Kaifeng ; Shen, Jinni ; Fu, Xianzhi ; Zhang, Xuming ; Long, Jinlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Dipole moments</topic><topic>Electronics industry</topic><topic>Excitons</topic><topic>Free electrons</topic><topic>Hydrogen Evolution</topic><topic>Molecular Dipole</topic><topic>Nanoribbons</topic><topic>Naphthalimide</topic><topic>Organic semiconductors</topic><topic>Photocatalysis</topic><topic>Photoexcitation</topic><topic>Photoredox catalysis</topic><topic>Protons</topic><topic>Quantum efficiency</topic><topic>Self-Assembly</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Huan</creatorcontrib><creatorcontrib>Wang, Junhui</creatorcontrib><creatorcontrib>Zhao, Jiwu</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Liu, Bingqian</creatorcontrib><creatorcontrib>Zhu, Yujiao</creatorcontrib><creatorcontrib>Jia, Huaping</creatorcontrib><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>Shen, Jinni</creatorcontrib><creatorcontrib>Fu, Xianzhi</creatorcontrib><creatorcontrib>Zhang, Xuming</creatorcontrib><creatorcontrib>Long, Jinlin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Huan</au><au>Wang, Junhui</au><au>Zhao, Jiwu</au><au>Zhuang, Yan</au><au>Liu, Bingqian</au><au>Zhu, Yujiao</au><au>Jia, Huaping</au><au>Wu, Kaifeng</au><au>Shen, Jinni</au><au>Fu, Xianzhi</au><au>Zhang, Xuming</au><au>Long, Jinlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-03-14</date><risdate>2022</risdate><volume>134</volume><issue>12</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm.
The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202117645</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3675-0941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2636344312 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aqueous solutions Catalysis Catalysts Charge transfer Chemistry Dipole moments Electronics industry Excitons Free electrons Hydrogen Evolution Molecular Dipole Nanoribbons Naphthalimide Organic semiconductors Photocatalysis Photoexcitation Photoredox catalysis Protons Quantum efficiency Self-Assembly Separation |
title | Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dipole%E2%80%90Induced%20Photoredox%20Catalysis%20for%20Hydrogen%20Evolution%20over%20Self%E2%80%90Assembled%20Naphthalimide%20Nanoribbons&rft.jtitle=Angewandte%20Chemie&rft.au=Lin,%20Huan&rft.date=2022-03-14&rft.volume=134&rft.issue=12&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202117645&rft_dat=%3Cproquest_cross%3E2636344312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636344312&rft_id=info:pmid/&rfr_iscdi=true |