Loading…

Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons

D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2022-03, Vol.134 (12), p.n/a
Main Authors: Lin, Huan, Wang, Junhui, Zhao, Jiwu, Zhuang, Yan, Liu, Bingqian, Zhu, Yujiao, Jia, Huaping, Wu, Kaifeng, Shen, Jinni, Fu, Xianzhi, Zhang, Xuming, Long, Jinlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583
cites cdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583
container_end_page n/a
container_issue 12
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Lin, Huan
Wang, Junhui
Zhao, Jiwu
Zhuang, Yan
Liu, Bingqian
Zhu, Yujiao
Jia, Huaping
Wu, Kaifeng
Shen, Jinni
Fu, Xianzhi
Zhang, Xuming
Long, Jinlin
description D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm. The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.
doi_str_mv 10.1002/ange.202117645
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636344312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636344312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5RyJc4p_Ejs5VqW0lUpBAs6R7WzaIDcOdlLIjUfgGXkSUhXBkdPuSvPNagahS4JHBGN6Las1jCimhAgexUdoQGJKQiZicYwGGEdRmNAoPUVn3r9gjDkV6QDt7qwB3Rrpgpuy7vevj89Flbca8uBhYxvrILfvwUQ20nS-9EFhXTDvcmfXUAXTnTVtU9oqsDtwwSOYoufH3sNWmd5hJetNs5Gm3JY59FdlXamUrfw5Oimk8XDxM4fo-Xb6NJmHy_vZYjJehroPEoccK1VQxlKaAE2TPNe6iDVwoEpwLaRghGgaYZYWiutcKyIoqIRgxrGQccKG6OrgWzv72oJvshfbuqp_mVHOOIsiRmivGh1U2lnvHRRZ7cqtdF1GcLbvNtt3m_122wPpAXgrDXT_qLPxajb9Y78B8SqBrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636344312</pqid></control><display><type>article</type><title>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lin, Huan ; Wang, Junhui ; Zhao, Jiwu ; Zhuang, Yan ; Liu, Bingqian ; Zhu, Yujiao ; Jia, Huaping ; Wu, Kaifeng ; Shen, Jinni ; Fu, Xianzhi ; Zhang, Xuming ; Long, Jinlin</creator><creatorcontrib>Lin, Huan ; Wang, Junhui ; Zhao, Jiwu ; Zhuang, Yan ; Liu, Bingqian ; Zhu, Yujiao ; Jia, Huaping ; Wu, Kaifeng ; Shen, Jinni ; Fu, Xianzhi ; Zhang, Xuming ; Long, Jinlin</creatorcontrib><description>D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm. The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202117645</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Catalysis ; Catalysts ; Charge transfer ; Chemistry ; Dipole moments ; Electronics industry ; Excitons ; Free electrons ; Hydrogen Evolution ; Molecular Dipole ; Nanoribbons ; Naphthalimide ; Organic semiconductors ; Photocatalysis ; Photoexcitation ; Photoredox catalysis ; Protons ; Quantum efficiency ; Self-Assembly ; Separation</subject><ispartof>Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</citedby><cites>FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</cites><orcidid>0000-0002-3675-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Huan</creatorcontrib><creatorcontrib>Wang, Junhui</creatorcontrib><creatorcontrib>Zhao, Jiwu</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Liu, Bingqian</creatorcontrib><creatorcontrib>Zhu, Yujiao</creatorcontrib><creatorcontrib>Jia, Huaping</creatorcontrib><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>Shen, Jinni</creatorcontrib><creatorcontrib>Fu, Xianzhi</creatorcontrib><creatorcontrib>Zhang, Xuming</creatorcontrib><creatorcontrib>Long, Jinlin</creatorcontrib><title>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</title><title>Angewandte Chemie</title><description>D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm. The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.</description><subject>Aqueous solutions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Dipole moments</subject><subject>Electronics industry</subject><subject>Excitons</subject><subject>Free electrons</subject><subject>Hydrogen Evolution</subject><subject>Molecular Dipole</subject><subject>Nanoribbons</subject><subject>Naphthalimide</subject><subject>Organic semiconductors</subject><subject>Photocatalysis</subject><subject>Photoexcitation</subject><subject>Photoredox catalysis</subject><subject>Protons</subject><subject>Quantum efficiency</subject><subject>Self-Assembly</subject><subject>Separation</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5RyJc4p_Ejs5VqW0lUpBAs6R7WzaIDcOdlLIjUfgGXkSUhXBkdPuSvPNagahS4JHBGN6Las1jCimhAgexUdoQGJKQiZicYwGGEdRmNAoPUVn3r9gjDkV6QDt7qwB3Rrpgpuy7vevj89Flbca8uBhYxvrILfvwUQ20nS-9EFhXTDvcmfXUAXTnTVtU9oqsDtwwSOYoufH3sNWmd5hJetNs5Gm3JY59FdlXamUrfw5Oimk8XDxM4fo-Xb6NJmHy_vZYjJehroPEoccK1VQxlKaAE2TPNe6iDVwoEpwLaRghGgaYZYWiutcKyIoqIRgxrGQccKG6OrgWzv72oJvshfbuqp_mVHOOIsiRmivGh1U2lnvHRRZ7cqtdF1GcLbvNtt3m_122wPpAXgrDXT_qLPxajb9Y78B8SqBrA</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Lin, Huan</creator><creator>Wang, Junhui</creator><creator>Zhao, Jiwu</creator><creator>Zhuang, Yan</creator><creator>Liu, Bingqian</creator><creator>Zhu, Yujiao</creator><creator>Jia, Huaping</creator><creator>Wu, Kaifeng</creator><creator>Shen, Jinni</creator><creator>Fu, Xianzhi</creator><creator>Zhang, Xuming</creator><creator>Long, Jinlin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3675-0941</orcidid></search><sort><creationdate>20220314</creationdate><title>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</title><author>Lin, Huan ; Wang, Junhui ; Zhao, Jiwu ; Zhuang, Yan ; Liu, Bingqian ; Zhu, Yujiao ; Jia, Huaping ; Wu, Kaifeng ; Shen, Jinni ; Fu, Xianzhi ; Zhang, Xuming ; Long, Jinlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Dipole moments</topic><topic>Electronics industry</topic><topic>Excitons</topic><topic>Free electrons</topic><topic>Hydrogen Evolution</topic><topic>Molecular Dipole</topic><topic>Nanoribbons</topic><topic>Naphthalimide</topic><topic>Organic semiconductors</topic><topic>Photocatalysis</topic><topic>Photoexcitation</topic><topic>Photoredox catalysis</topic><topic>Protons</topic><topic>Quantum efficiency</topic><topic>Self-Assembly</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Huan</creatorcontrib><creatorcontrib>Wang, Junhui</creatorcontrib><creatorcontrib>Zhao, Jiwu</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Liu, Bingqian</creatorcontrib><creatorcontrib>Zhu, Yujiao</creatorcontrib><creatorcontrib>Jia, Huaping</creatorcontrib><creatorcontrib>Wu, Kaifeng</creatorcontrib><creatorcontrib>Shen, Jinni</creatorcontrib><creatorcontrib>Fu, Xianzhi</creatorcontrib><creatorcontrib>Zhang, Xuming</creatorcontrib><creatorcontrib>Long, Jinlin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Huan</au><au>Wang, Junhui</au><au>Zhao, Jiwu</au><au>Zhuang, Yan</au><au>Liu, Bingqian</au><au>Zhu, Yujiao</au><au>Jia, Huaping</au><au>Wu, Kaifeng</au><au>Shen, Jinni</au><au>Fu, Xianzhi</au><au>Zhang, Xuming</au><au>Long, Jinlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-03-14</date><risdate>2022</risdate><volume>134</volume><issue>12</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm. The D‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D was smartly designed and synthesized to fabricate self‐assembled CZNI nanoribbons for efficient photocatalytic hydrogen production. It was revealed that the molecular dipole field could significantly reduce the exciton binding energy of the organic semiconductor and drive exciton dissociation to free charges for reducing protons to H2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202117645</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3675-0941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-03, Vol.134 (12), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2636344312
source Wiley-Blackwell Read & Publish Collection
subjects Aqueous solutions
Catalysis
Catalysts
Charge transfer
Chemistry
Dipole moments
Electronics industry
Excitons
Free electrons
Hydrogen Evolution
Molecular Dipole
Nanoribbons
Naphthalimide
Organic semiconductors
Photocatalysis
Photoexcitation
Photoredox catalysis
Protons
Quantum efficiency
Self-Assembly
Separation
title Molecular Dipole‐Induced Photoredox Catalysis for Hydrogen Evolution over Self‐Assembled Naphthalimide Nanoribbons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dipole%E2%80%90Induced%20Photoredox%20Catalysis%20for%20Hydrogen%20Evolution%20over%20Self%E2%80%90Assembled%20Naphthalimide%20Nanoribbons&rft.jtitle=Angewandte%20Chemie&rft.au=Lin,%20Huan&rft.date=2022-03-14&rft.volume=134&rft.issue=12&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202117645&rft_dat=%3Cproquest_cross%3E2636344312%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2025-60bbf233928e298ddccf5ce6e2b76c7a7311c24039fb6cdcb172eb8103607a583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636344312&rft_id=info:pmid/&rfr_iscdi=true