Loading…

Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts

The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2022-03, Vol.236, p.111544, Article 111544
Main Authors: Fırat, Meriç, Sivaramakrishnan Radhakrishnan, Hariharsudan, Payo, María Recamán, Choulat, Patrick, Badran, Hussein, van der Heide, Arvid, Govaerts, Jonathan, Duerinckx, Filip, Tous, Loic, Hajjiah, Ali, Poortmans, Jef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423
cites cdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423
container_end_page
container_issue
container_start_page 111544
container_title Solar energy materials and solar cells
container_volume 236
creator Fırat, Meriç
Sivaramakrishnan Radhakrishnan, Hariharsudan
Payo, María Recamán
Choulat, Patrick
Badran, Hussein
van der Heide, Arvid
Govaerts, Jonathan
Duerinckx, Filip
Tous, Loic
Hajjiah, Ali
Poortmans, Jef
description The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films. [Display omitted] •In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.
doi_str_mv 10.1016/j.solmat.2021.111544
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636861585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821005808</els_id><sourcerecordid>2636861585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78Bx4CnrNm2rRNL4LUT1hwwdVrSNOpptSmJtmV_e-t1LOHYWB47w3vR8gF8CVwyK-6ZXD9p47LhCewBIBMiAOyAFmULE1LeUgWvEwKxhMhj8lJCB3nPMlTsSB2pf07Mu1R09q22ljd04FtnteVG-gUqz012PeBftv4Qe10s3FLxw8XpvHbwBo3YkNX6-rtlo6u37MXS0cdgt3paId3atwQtYnhjBy1ug94_rdPyev93aZ6ZKvnh6fqZsVMKnlkRjR1mug6wQYQOUAtGlmLWouyzjIDpclbzLO2yPMasqaEVhhRaAlYFhJEkp6Syzl39O5riyGqzm39ML1UU-Vc5pDJbFKJWWW8C8Fjq0ZvP7XfK-DqF6rq1AxV_UJVM9TJdj3bcGqws-hVMBYHg431aKJqnP0_4AfE6IJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636861585</pqid></control><display><type>article</type><title>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</title><source>ScienceDirect Journals</source><creator>Fırat, Meriç ; Sivaramakrishnan Radhakrishnan, Hariharsudan ; Payo, María Recamán ; Choulat, Patrick ; Badran, Hussein ; van der Heide, Arvid ; Govaerts, Jonathan ; Duerinckx, Filip ; Tous, Loic ; Hajjiah, Ali ; Poortmans, Jef</creator><creatorcontrib>Fırat, Meriç ; Sivaramakrishnan Radhakrishnan, Hariharsudan ; Payo, María Recamán ; Choulat, Patrick ; Badran, Hussein ; van der Heide, Arvid ; Govaerts, Jonathan ; Duerinckx, Filip ; Tous, Loic ; Hajjiah, Ali ; Poortmans, Jef</creatorcontrib><description>The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films. [Display omitted] •In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111544</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Contact potentials ; Cytology ; Emitters ; Energy conversion efficiency ; Film thickness ; In situ phosphorus doping ; Laminates ; Low pressure ; LPCVD ; Metallizing ; Open circuit voltage ; Passivating contacts ; Phosphorus ; Photovoltaic cells ; Polysilicon ; Recombination ; Screen printing ; Silicon films ; Solar cells ; TOPCon</subject><ispartof>Solar energy materials and solar cells, 2022-03, Vol.236, p.111544, Article 111544</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</citedby><cites>FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fırat, Meriç</creatorcontrib><creatorcontrib>Sivaramakrishnan Radhakrishnan, Hariharsudan</creatorcontrib><creatorcontrib>Payo, María Recamán</creatorcontrib><creatorcontrib>Choulat, Patrick</creatorcontrib><creatorcontrib>Badran, Hussein</creatorcontrib><creatorcontrib>van der Heide, Arvid</creatorcontrib><creatorcontrib>Govaerts, Jonathan</creatorcontrib><creatorcontrib>Duerinckx, Filip</creatorcontrib><creatorcontrib>Tous, Loic</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><title>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</title><title>Solar energy materials and solar cells</title><description>The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films. [Display omitted] •In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.</description><subject>Chemical vapor deposition</subject><subject>Contact potentials</subject><subject>Cytology</subject><subject>Emitters</subject><subject>Energy conversion efficiency</subject><subject>Film thickness</subject><subject>In situ phosphorus doping</subject><subject>Laminates</subject><subject>Low pressure</subject><subject>LPCVD</subject><subject>Metallizing</subject><subject>Open circuit voltage</subject><subject>Passivating contacts</subject><subject>Phosphorus</subject><subject>Photovoltaic cells</subject><subject>Polysilicon</subject><subject>Recombination</subject><subject>Screen printing</subject><subject>Silicon films</subject><subject>Solar cells</subject><subject>TOPCon</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78Bx4CnrNm2rRNL4LUT1hwwdVrSNOpptSmJtmV_e-t1LOHYWB47w3vR8gF8CVwyK-6ZXD9p47LhCewBIBMiAOyAFmULE1LeUgWvEwKxhMhj8lJCB3nPMlTsSB2pf07Mu1R09q22ljd04FtnteVG-gUqz012PeBftv4Qe10s3FLxw8XpvHbwBo3YkNX6-rtlo6u37MXS0cdgt3paId3atwQtYnhjBy1ug94_rdPyev93aZ6ZKvnh6fqZsVMKnlkRjR1mug6wQYQOUAtGlmLWouyzjIDpclbzLO2yPMasqaEVhhRaAlYFhJEkp6Syzl39O5riyGqzm39ML1UU-Vc5pDJbFKJWWW8C8Fjq0ZvP7XfK-DqF6rq1AxV_UJVM9TJdj3bcGqws-hVMBYHg431aKJqnP0_4AfE6IJm</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Fırat, Meriç</creator><creator>Sivaramakrishnan Radhakrishnan, Hariharsudan</creator><creator>Payo, María Recamán</creator><creator>Choulat, Patrick</creator><creator>Badran, Hussein</creator><creator>van der Heide, Arvid</creator><creator>Govaerts, Jonathan</creator><creator>Duerinckx, Filip</creator><creator>Tous, Loic</creator><creator>Hajjiah, Ali</creator><creator>Poortmans, Jef</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202203</creationdate><title>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</title><author>Fırat, Meriç ; Sivaramakrishnan Radhakrishnan, Hariharsudan ; Payo, María Recamán ; Choulat, Patrick ; Badran, Hussein ; van der Heide, Arvid ; Govaerts, Jonathan ; Duerinckx, Filip ; Tous, Loic ; Hajjiah, Ali ; Poortmans, Jef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical vapor deposition</topic><topic>Contact potentials</topic><topic>Cytology</topic><topic>Emitters</topic><topic>Energy conversion efficiency</topic><topic>Film thickness</topic><topic>In situ phosphorus doping</topic><topic>Laminates</topic><topic>Low pressure</topic><topic>LPCVD</topic><topic>Metallizing</topic><topic>Open circuit voltage</topic><topic>Passivating contacts</topic><topic>Phosphorus</topic><topic>Photovoltaic cells</topic><topic>Polysilicon</topic><topic>Recombination</topic><topic>Screen printing</topic><topic>Silicon films</topic><topic>Solar cells</topic><topic>TOPCon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fırat, Meriç</creatorcontrib><creatorcontrib>Sivaramakrishnan Radhakrishnan, Hariharsudan</creatorcontrib><creatorcontrib>Payo, María Recamán</creatorcontrib><creatorcontrib>Choulat, Patrick</creatorcontrib><creatorcontrib>Badran, Hussein</creatorcontrib><creatorcontrib>van der Heide, Arvid</creatorcontrib><creatorcontrib>Govaerts, Jonathan</creatorcontrib><creatorcontrib>Duerinckx, Filip</creatorcontrib><creatorcontrib>Tous, Loic</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fırat, Meriç</au><au>Sivaramakrishnan Radhakrishnan, Hariharsudan</au><au>Payo, María Recamán</au><au>Choulat, Patrick</au><au>Badran, Hussein</au><au>van der Heide, Arvid</au><au>Govaerts, Jonathan</au><au>Duerinckx, Filip</au><au>Tous, Loic</au><au>Hajjiah, Ali</au><au>Poortmans, Jef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-03</date><risdate>2022</risdate><volume>236</volume><spage>111544</spage><pages>111544-</pages><artnum>111544</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films. [Display omitted] •In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111544</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2022-03, Vol.236, p.111544, Article 111544
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2636861585
source ScienceDirect Journals
subjects Chemical vapor deposition
Contact potentials
Cytology
Emitters
Energy conversion efficiency
Film thickness
In situ phosphorus doping
Laminates
Low pressure
LPCVD
Metallizing
Open circuit voltage
Passivating contacts
Phosphorus
Photovoltaic cells
Polysilicon
Recombination
Screen printing
Silicon films
Solar cells
TOPCon
title Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20bifacial%20n-TOPCon%20solar%20cells%20with%20in%20situ%20phosphorus-doped%20LPCVD%20poly-Si%20passivating%20contacts&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=F%C4%B1rat,%20Meri%C3%A7&rft.date=2022-03&rft.volume=236&rft.spage=111544&rft.pages=111544-&rft.artnum=111544&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111544&rft_dat=%3Cproquest_cross%3E2636861585%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636861585&rft_id=info:pmid/&rfr_iscdi=true