Loading…
Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts
The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel...
Saved in:
Published in: | Solar energy materials and solar cells 2022-03, Vol.236, p.111544, Article 111544 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423 |
container_end_page | |
container_issue | |
container_start_page | 111544 |
container_title | Solar energy materials and solar cells |
container_volume | 236 |
creator | Fırat, Meriç Sivaramakrishnan Radhakrishnan, Hariharsudan Payo, María Recamán Choulat, Patrick Badran, Hussein van der Heide, Arvid Govaerts, Jonathan Duerinckx, Filip Tous, Loic Hajjiah, Ali Poortmans, Jef |
description | The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films.
[Display omitted]
•In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented. |
doi_str_mv | 10.1016/j.solmat.2021.111544 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636861585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821005808</els_id><sourcerecordid>2636861585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78Bx4CnrNm2rRNL4LUT1hwwdVrSNOpptSmJtmV_e-t1LOHYWB47w3vR8gF8CVwyK-6ZXD9p47LhCewBIBMiAOyAFmULE1LeUgWvEwKxhMhj8lJCB3nPMlTsSB2pf07Mu1R09q22ljd04FtnteVG-gUqz012PeBftv4Qe10s3FLxw8XpvHbwBo3YkNX6-rtlo6u37MXS0cdgt3paId3atwQtYnhjBy1ug94_rdPyev93aZ6ZKvnh6fqZsVMKnlkRjR1mug6wQYQOUAtGlmLWouyzjIDpclbzLO2yPMasqaEVhhRaAlYFhJEkp6Syzl39O5riyGqzm39ML1UU-Vc5pDJbFKJWWW8C8Fjq0ZvP7XfK-DqF6rq1AxV_UJVM9TJdj3bcGqws-hVMBYHg431aKJqnP0_4AfE6IJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636861585</pqid></control><display><type>article</type><title>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</title><source>ScienceDirect Journals</source><creator>Fırat, Meriç ; Sivaramakrishnan Radhakrishnan, Hariharsudan ; Payo, María Recamán ; Choulat, Patrick ; Badran, Hussein ; van der Heide, Arvid ; Govaerts, Jonathan ; Duerinckx, Filip ; Tous, Loic ; Hajjiah, Ali ; Poortmans, Jef</creator><creatorcontrib>Fırat, Meriç ; Sivaramakrishnan Radhakrishnan, Hariharsudan ; Payo, María Recamán ; Choulat, Patrick ; Badran, Hussein ; van der Heide, Arvid ; Govaerts, Jonathan ; Duerinckx, Filip ; Tous, Loic ; Hajjiah, Ali ; Poortmans, Jef</creatorcontrib><description>The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films.
[Display omitted]
•In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111544</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Contact potentials ; Cytology ; Emitters ; Energy conversion efficiency ; Film thickness ; In situ phosphorus doping ; Laminates ; Low pressure ; LPCVD ; Metallizing ; Open circuit voltage ; Passivating contacts ; Phosphorus ; Photovoltaic cells ; Polysilicon ; Recombination ; Screen printing ; Silicon films ; Solar cells ; TOPCon</subject><ispartof>Solar energy materials and solar cells, 2022-03, Vol.236, p.111544, Article 111544</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</citedby><cites>FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fırat, Meriç</creatorcontrib><creatorcontrib>Sivaramakrishnan Radhakrishnan, Hariharsudan</creatorcontrib><creatorcontrib>Payo, María Recamán</creatorcontrib><creatorcontrib>Choulat, Patrick</creatorcontrib><creatorcontrib>Badran, Hussein</creatorcontrib><creatorcontrib>van der Heide, Arvid</creatorcontrib><creatorcontrib>Govaerts, Jonathan</creatorcontrib><creatorcontrib>Duerinckx, Filip</creatorcontrib><creatorcontrib>Tous, Loic</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><title>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</title><title>Solar energy materials and solar cells</title><description>The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films.
[Display omitted]
•In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.</description><subject>Chemical vapor deposition</subject><subject>Contact potentials</subject><subject>Cytology</subject><subject>Emitters</subject><subject>Energy conversion efficiency</subject><subject>Film thickness</subject><subject>In situ phosphorus doping</subject><subject>Laminates</subject><subject>Low pressure</subject><subject>LPCVD</subject><subject>Metallizing</subject><subject>Open circuit voltage</subject><subject>Passivating contacts</subject><subject>Phosphorus</subject><subject>Photovoltaic cells</subject><subject>Polysilicon</subject><subject>Recombination</subject><subject>Screen printing</subject><subject>Silicon films</subject><subject>Solar cells</subject><subject>TOPCon</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78Bx4CnrNm2rRNL4LUT1hwwdVrSNOpptSmJtmV_e-t1LOHYWB47w3vR8gF8CVwyK-6ZXD9p47LhCewBIBMiAOyAFmULE1LeUgWvEwKxhMhj8lJCB3nPMlTsSB2pf07Mu1R09q22ljd04FtnteVG-gUqz012PeBftv4Qe10s3FLxw8XpvHbwBo3YkNX6-rtlo6u37MXS0cdgt3paId3atwQtYnhjBy1ug94_rdPyev93aZ6ZKvnh6fqZsVMKnlkRjR1mug6wQYQOUAtGlmLWouyzjIDpclbzLO2yPMasqaEVhhRaAlYFhJEkp6Syzl39O5riyGqzm39ML1UU-Vc5pDJbFKJWWW8C8Fjq0ZvP7XfK-DqF6rq1AxV_UJVM9TJdj3bcGqws-hVMBYHg431aKJqnP0_4AfE6IJm</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Fırat, Meriç</creator><creator>Sivaramakrishnan Radhakrishnan, Hariharsudan</creator><creator>Payo, María Recamán</creator><creator>Choulat, Patrick</creator><creator>Badran, Hussein</creator><creator>van der Heide, Arvid</creator><creator>Govaerts, Jonathan</creator><creator>Duerinckx, Filip</creator><creator>Tous, Loic</creator><creator>Hajjiah, Ali</creator><creator>Poortmans, Jef</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202203</creationdate><title>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</title><author>Fırat, Meriç ; Sivaramakrishnan Radhakrishnan, Hariharsudan ; Payo, María Recamán ; Choulat, Patrick ; Badran, Hussein ; van der Heide, Arvid ; Govaerts, Jonathan ; Duerinckx, Filip ; Tous, Loic ; Hajjiah, Ali ; Poortmans, Jef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical vapor deposition</topic><topic>Contact potentials</topic><topic>Cytology</topic><topic>Emitters</topic><topic>Energy conversion efficiency</topic><topic>Film thickness</topic><topic>In situ phosphorus doping</topic><topic>Laminates</topic><topic>Low pressure</topic><topic>LPCVD</topic><topic>Metallizing</topic><topic>Open circuit voltage</topic><topic>Passivating contacts</topic><topic>Phosphorus</topic><topic>Photovoltaic cells</topic><topic>Polysilicon</topic><topic>Recombination</topic><topic>Screen printing</topic><topic>Silicon films</topic><topic>Solar cells</topic><topic>TOPCon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fırat, Meriç</creatorcontrib><creatorcontrib>Sivaramakrishnan Radhakrishnan, Hariharsudan</creatorcontrib><creatorcontrib>Payo, María Recamán</creatorcontrib><creatorcontrib>Choulat, Patrick</creatorcontrib><creatorcontrib>Badran, Hussein</creatorcontrib><creatorcontrib>van der Heide, Arvid</creatorcontrib><creatorcontrib>Govaerts, Jonathan</creatorcontrib><creatorcontrib>Duerinckx, Filip</creatorcontrib><creatorcontrib>Tous, Loic</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fırat, Meriç</au><au>Sivaramakrishnan Radhakrishnan, Hariharsudan</au><au>Payo, María Recamán</au><au>Choulat, Patrick</au><au>Badran, Hussein</au><au>van der Heide, Arvid</au><au>Govaerts, Jonathan</au><au>Duerinckx, Filip</au><au>Tous, Loic</au><au>Hajjiah, Ali</au><au>Poortmans, Jef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2022-03</date><risdate>2022</risdate><volume>236</volume><spage>111544</spage><pages>111544-</pages><artnum>111544</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The potential of passivating contacts incorporating in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films grown by low pressure chemical vapor deposition (LPCVD) is demonstrated in this work by integrating these layers at the rear side of large-area (241.3 cm2) bifacial n-type Tunnel Oxide Passivated Contact (n-TOPCon) solar cells with diffused front emitter and screen-printed contacts. In situ doped poly-Si films are studied as their use could simplify the production of industrial n-TOPCon solar cells compared to the common approach relying on ex situ doping of intrinsic LPCVD poly-Si films. The developed poly-Si passivating contacts exhibited excellent characteristics with low recombination current densities in passivated and screen-printing metallized regions down to 2.3 fA/cm2 and 65.8 fA/cm2, respectively, and a low contact resistivity of 2.0 mΩ⋅cm2. For reaching the best passivating contact characteristics and high solar cell efficiencies, a poly-Si film thickness of 150–200 nm was found to be optimal while a polished rear surface morphology was found to be beneficial. The best solar cell reached a certified power conversion efficiency of 23.01% along with a high open circuit voltage of 691.7 mV, enabled by the passivating contacts with the in situ doped poly-Si films. 1-cell glass-glass laminates were also fabricated with the developed solar cells, which showed no loss in their power output both upon 400 thermal cycles and after 1000 h of damp heat testing. Lastly, a roadmap is presented, indicating strategies to achieve efficiencies up to 25.5% with n-TOPCon solar cells incorporating the in situ P-doped LPCVD poly-Si films.
[Display omitted]
•In situ P-doped LPCVD poly-Si passivating contacts integrated in n-TOPCon solar cells.•241.3 cm2-large bifacial n-TOPCon devices with 23.01% certified efficiency demonstrated.•Using ≥ 150 nm of poly-Si and polished rear side improves the solar cell efficiency.•1-cell glass-glass laminates of the devices pass damp heat and thermal cycling tests.•Roadmap to 25.5% efficiency presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111544</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2022-03, Vol.236, p.111544, Article 111544 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2636861585 |
source | ScienceDirect Journals |
subjects | Chemical vapor deposition Contact potentials Cytology Emitters Energy conversion efficiency Film thickness In situ phosphorus doping Laminates Low pressure LPCVD Metallizing Open circuit voltage Passivating contacts Phosphorus Photovoltaic cells Polysilicon Recombination Screen printing Silicon films Solar cells TOPCon |
title | Large-area bifacial n-TOPCon solar cells with in situ phosphorus-doped LPCVD poly-Si passivating contacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20bifacial%20n-TOPCon%20solar%20cells%20with%20in%20situ%20phosphorus-doped%20LPCVD%20poly-Si%20passivating%20contacts&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=F%C4%B1rat,%20Meri%C3%A7&rft.date=2022-03&rft.volume=236&rft.spage=111544&rft.pages=111544-&rft.artnum=111544&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111544&rft_dat=%3Cproquest_cross%3E2636861585%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-c4db32ab2ed1ee011b4d8b4ba49b55c19c6fe65f766b15d91f4c47a81e9781423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636861585&rft_id=info:pmid/&rfr_iscdi=true |