Loading…

In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects

Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport, and mechanical properties. Laser surface remelting can be used to modify the sub-surface microstructure of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Gomell, Leonie, Shao-Pu Tsai, Roscher, Moritz, Ruben Bueno Villoro, Konijnenberg, Peter, Zaefferer, Stefan, Scheu, Christina, Gault, Baptiste
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gomell, Leonie
Shao-Pu Tsai
Roscher, Moritz
Ruben Bueno Villoro
Konijnenberg, Peter
Zaefferer, Stefan
Scheu, Christina
Gault, Baptiste
description Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport, and mechanical properties. Laser surface remelting can be used to modify the sub-surface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere, in order to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channelling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2637039301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637039301</sourcerecordid><originalsourceid>FETCH-proquest_journals_26370393013</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgKOofFjwXYqJVjyKK3sWrhHQrKWmiu5uDv1fBB3gamJmBGhtrF9VmacxIzZg7rbWp12a1smOVz6niIAVSEApNSHfILRzRXHcRmkJfER0jARdqnUcg7DHK10uG3qXwKNEJQh88ZRYqXgohuNSApxeLizEkhAZb9MJTNWxdZJz9OFHz4-GyP1UPys-CLLcuF0qfdDO1XWu7tXph_7vexm5LJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637039301</pqid></control><display><type>article</type><title>In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects</title><source>ProQuest - Publicly Available Content Database</source><creator>Gomell, Leonie ; Shao-Pu Tsai ; Roscher, Moritz ; Ruben Bueno Villoro ; Konijnenberg, Peter ; Zaefferer, Stefan ; Scheu, Christina ; Gault, Baptiste</creator><creatorcontrib>Gomell, Leonie ; Shao-Pu Tsai ; Roscher, Moritz ; Ruben Bueno Villoro ; Konijnenberg, Peter ; Zaefferer, Stefan ; Scheu, Christina ; Gault, Baptiste</creatorcontrib><description>Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport, and mechanical properties. Laser surface remelting can be used to modify the sub-surface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere, in order to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channelling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical composition ; Crystal defects ; Crystal structure ; Crystallinity ; Dislocation density ; Electron backscatter diffraction ; Electron channelling ; Grain boundaries ; Mechanical properties ; Melting ; Microstructure ; Nitrogen ; Physical properties ; Solidification ; Thermoelectric materials</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2637039301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gomell, Leonie</creatorcontrib><creatorcontrib>Shao-Pu Tsai</creatorcontrib><creatorcontrib>Roscher, Moritz</creatorcontrib><creatorcontrib>Ruben Bueno Villoro</creatorcontrib><creatorcontrib>Konijnenberg, Peter</creatorcontrib><creatorcontrib>Zaefferer, Stefan</creatorcontrib><creatorcontrib>Scheu, Christina</creatorcontrib><creatorcontrib>Gault, Baptiste</creatorcontrib><title>In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects</title><title>arXiv.org</title><description>Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport, and mechanical properties. Laser surface remelting can be used to modify the sub-surface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere, in order to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channelling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties.</description><subject>Chemical composition</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dislocation density</subject><subject>Electron backscatter diffraction</subject><subject>Electron channelling</subject><subject>Grain boundaries</subject><subject>Mechanical properties</subject><subject>Melting</subject><subject>Microstructure</subject><subject>Nitrogen</subject><subject>Physical properties</subject><subject>Solidification</subject><subject>Thermoelectric materials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgKOofFjwXYqJVjyKK3sWrhHQrKWmiu5uDv1fBB3gamJmBGhtrF9VmacxIzZg7rbWp12a1smOVz6niIAVSEApNSHfILRzRXHcRmkJfER0jARdqnUcg7DHK10uG3qXwKNEJQh88ZRYqXgohuNSApxeLizEkhAZb9MJTNWxdZJz9OFHz4-GyP1UPys-CLLcuF0qfdDO1XWu7tXph_7vexm5LJw</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Gomell, Leonie</creator><creator>Shao-Pu Tsai</creator><creator>Roscher, Moritz</creator><creator>Ruben Bueno Villoro</creator><creator>Konijnenberg, Peter</creator><creator>Zaefferer, Stefan</creator><creator>Scheu, Christina</creator><creator>Gault, Baptiste</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220304</creationdate><title>In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects</title><author>Gomell, Leonie ; Shao-Pu Tsai ; Roscher, Moritz ; Ruben Bueno Villoro ; Konijnenberg, Peter ; Zaefferer, Stefan ; Scheu, Christina ; Gault, Baptiste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26370393013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical composition</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dislocation density</topic><topic>Electron backscatter diffraction</topic><topic>Electron channelling</topic><topic>Grain boundaries</topic><topic>Mechanical properties</topic><topic>Melting</topic><topic>Microstructure</topic><topic>Nitrogen</topic><topic>Physical properties</topic><topic>Solidification</topic><topic>Thermoelectric materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomell, Leonie</creatorcontrib><creatorcontrib>Shao-Pu Tsai</creatorcontrib><creatorcontrib>Roscher, Moritz</creatorcontrib><creatorcontrib>Ruben Bueno Villoro</creatorcontrib><creatorcontrib>Konijnenberg, Peter</creatorcontrib><creatorcontrib>Zaefferer, Stefan</creatorcontrib><creatorcontrib>Scheu, Christina</creatorcontrib><creatorcontrib>Gault, Baptiste</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomell, Leonie</au><au>Shao-Pu Tsai</au><au>Roscher, Moritz</au><au>Ruben Bueno Villoro</au><au>Konijnenberg, Peter</au><au>Zaefferer, Stefan</au><au>Scheu, Christina</au><au>Gault, Baptiste</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects</atitle><jtitle>arXiv.org</jtitle><date>2022-03-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport, and mechanical properties. Laser surface remelting can be used to modify the sub-surface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere, in order to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channelling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2637039301
source ProQuest - Publicly Available Content Database
subjects Chemical composition
Crystal defects
Crystal structure
Crystallinity
Dislocation density
Electron backscatter diffraction
Electron channelling
Grain boundaries
Mechanical properties
Melting
Microstructure
Nitrogen
Physical properties
Solidification
Thermoelectric materials
title In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=In-situ%20nitriding%20of%20Fe2VAl%20during%20laser%20surface%20remelting%20to%20manipulate%20microstructure%20and%20crystalline%20defects&rft.jtitle=arXiv.org&rft.au=Gomell,%20Leonie&rft.date=2022-03-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2637039301%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26370393013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637039301&rft_id=info:pmid/&rfr_iscdi=true