Loading…

Mott Quantum Critical Points at finite doping

Strongly correlated materials often undergo a Mott metal-insulator transition, which is tipically first-order, as a function of control parameters like pressure. Upon doping, rich phase diagrams with competing instabilities are found. Yet, the conceptual link between the interaction-driven Mott tran...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Chatzieleftheriou, Maria, Kowalski, Alexander, Berović, Maja, Amaricci, Adriano, Capone, Massimo, Lorenzo De Leo, Sangiovanni, Giorgio, Luca de' Medici
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chatzieleftheriou, Maria
Kowalski, Alexander
Berović, Maja
Amaricci, Adriano
Capone, Massimo
Lorenzo De Leo
Sangiovanni, Giorgio
Luca de' Medici
description Strongly correlated materials often undergo a Mott metal-insulator transition, which is tipically first-order, as a function of control parameters like pressure. Upon doping, rich phase diagrams with competing instabilities are found. Yet, the conceptual link between the interaction-driven Mott transition and the finite-doping behavior lacks a clear connection with the theory of critical phenomena. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated to a phase separation region ending in a quantum critical point (QCP) at finite doping. This scenario is here demonstrated solving a simple multi-orbital Hubbard model relevant for the Iron-based superconductors, but its origin - the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling - is much more general. A strong analogy with cuprate superconductors is traced.
doi_str_mv 10.48550/arxiv.2203.02451
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2637042823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637042823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a951-54e7fdcf6833e9593e4743ef6d916b5bf45f16c87f6f7c4899d48c9eeb123eae3</originalsourceid><addsrcrecordid>eNotj8tKAzEUQIMgtNR-gLuA6xmTe_NcyuALWlTovmQyNyWlztSZjPj5FnR1dudwGLuVolZOa3Efxp_8XQMIrAUoLa_YEhBl5RTAgq2n6SiEAGNBa1yyajuUwj_m0Jf5kzdjLjmGE38fcl8mHgpPuc-FeDecc3-4YdcpnCZa_3PFdk-Pu-al2rw9vzYPmyp4LSutyKYuJuMQyWuPpKxCSqbz0rS6TUonaaKzySQblfO-Uy56olYCUiBcsbs_7Xkcvmaayv44zGN_Ke7BoBUK3GXpFwuwQ-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637042823</pqid></control><display><type>article</type><title>Mott Quantum Critical Points at finite doping</title><source>Publicly Available Content Database</source><creator>Chatzieleftheriou, Maria ; Kowalski, Alexander ; Berović, Maja ; Amaricci, Adriano ; Capone, Massimo ; Lorenzo De Leo ; Sangiovanni, Giorgio ; Luca de' Medici</creator><creatorcontrib>Chatzieleftheriou, Maria ; Kowalski, Alexander ; Berović, Maja ; Amaricci, Adriano ; Capone, Massimo ; Lorenzo De Leo ; Sangiovanni, Giorgio ; Luca de' Medici</creatorcontrib><description>Strongly correlated materials often undergo a Mott metal-insulator transition, which is tipically first-order, as a function of control parameters like pressure. Upon doping, rich phase diagrams with competing instabilities are found. Yet, the conceptual link between the interaction-driven Mott transition and the finite-doping behavior lacks a clear connection with the theory of critical phenomena. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated to a phase separation region ending in a quantum critical point (QCP) at finite doping. This scenario is here demonstrated solving a simple multi-orbital Hubbard model relevant for the Iron-based superconductors, but its origin - the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling - is much more general. A strong analogy with cuprate superconductors is traced.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2203.02451</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical potential ; Critical phenomena ; Critical point ; Doping ; Equations of state ; Insulators ; Metal-insulator transition ; Parameters ; Phase diagrams ; Phase separation ; Superconductors</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2637042823?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Chatzieleftheriou, Maria</creatorcontrib><creatorcontrib>Kowalski, Alexander</creatorcontrib><creatorcontrib>Berović, Maja</creatorcontrib><creatorcontrib>Amaricci, Adriano</creatorcontrib><creatorcontrib>Capone, Massimo</creatorcontrib><creatorcontrib>Lorenzo De Leo</creatorcontrib><creatorcontrib>Sangiovanni, Giorgio</creatorcontrib><creatorcontrib>Luca de' Medici</creatorcontrib><title>Mott Quantum Critical Points at finite doping</title><title>arXiv.org</title><description>Strongly correlated materials often undergo a Mott metal-insulator transition, which is tipically first-order, as a function of control parameters like pressure. Upon doping, rich phase diagrams with competing instabilities are found. Yet, the conceptual link between the interaction-driven Mott transition and the finite-doping behavior lacks a clear connection with the theory of critical phenomena. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated to a phase separation region ending in a quantum critical point (QCP) at finite doping. This scenario is here demonstrated solving a simple multi-orbital Hubbard model relevant for the Iron-based superconductors, but its origin - the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling - is much more general. A strong analogy with cuprate superconductors is traced.</description><subject>Chemical potential</subject><subject>Critical phenomena</subject><subject>Critical point</subject><subject>Doping</subject><subject>Equations of state</subject><subject>Insulators</subject><subject>Metal-insulator transition</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Phase separation</subject><subject>Superconductors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj8tKAzEUQIMgtNR-gLuA6xmTe_NcyuALWlTovmQyNyWlztSZjPj5FnR1dudwGLuVolZOa3Efxp_8XQMIrAUoLa_YEhBl5RTAgq2n6SiEAGNBa1yyajuUwj_m0Jf5kzdjLjmGE38fcl8mHgpPuc-FeDecc3-4YdcpnCZa_3PFdk-Pu-al2rw9vzYPmyp4LSutyKYuJuMQyWuPpKxCSqbz0rS6TUonaaKzySQblfO-Uy56olYCUiBcsbs_7Xkcvmaayv44zGN_Ke7BoBUK3GXpFwuwQ-E</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Chatzieleftheriou, Maria</creator><creator>Kowalski, Alexander</creator><creator>Berović, Maja</creator><creator>Amaricci, Adriano</creator><creator>Capone, Massimo</creator><creator>Lorenzo De Leo</creator><creator>Sangiovanni, Giorgio</creator><creator>Luca de' Medici</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220304</creationdate><title>Mott Quantum Critical Points at finite doping</title><author>Chatzieleftheriou, Maria ; Kowalski, Alexander ; Berović, Maja ; Amaricci, Adriano ; Capone, Massimo ; Lorenzo De Leo ; Sangiovanni, Giorgio ; Luca de' Medici</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a951-54e7fdcf6833e9593e4743ef6d916b5bf45f16c87f6f7c4899d48c9eeb123eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical potential</topic><topic>Critical phenomena</topic><topic>Critical point</topic><topic>Doping</topic><topic>Equations of state</topic><topic>Insulators</topic><topic>Metal-insulator transition</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Phase separation</topic><topic>Superconductors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chatzieleftheriou, Maria</creatorcontrib><creatorcontrib>Kowalski, Alexander</creatorcontrib><creatorcontrib>Berović, Maja</creatorcontrib><creatorcontrib>Amaricci, Adriano</creatorcontrib><creatorcontrib>Capone, Massimo</creatorcontrib><creatorcontrib>Lorenzo De Leo</creatorcontrib><creatorcontrib>Sangiovanni, Giorgio</creatorcontrib><creatorcontrib>Luca de' Medici</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatzieleftheriou, Maria</au><au>Kowalski, Alexander</au><au>Berović, Maja</au><au>Amaricci, Adriano</au><au>Capone, Massimo</au><au>Lorenzo De Leo</au><au>Sangiovanni, Giorgio</au><au>Luca de' Medici</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mott Quantum Critical Points at finite doping</atitle><jtitle>arXiv.org</jtitle><date>2022-03-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Strongly correlated materials often undergo a Mott metal-insulator transition, which is tipically first-order, as a function of control parameters like pressure. Upon doping, rich phase diagrams with competing instabilities are found. Yet, the conceptual link between the interaction-driven Mott transition and the finite-doping behavior lacks a clear connection with the theory of critical phenomena. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated to a phase separation region ending in a quantum critical point (QCP) at finite doping. This scenario is here demonstrated solving a simple multi-orbital Hubbard model relevant for the Iron-based superconductors, but its origin - the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling - is much more general. A strong analogy with cuprate superconductors is traced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2203.02451</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2637042823
source Publicly Available Content Database
subjects Chemical potential
Critical phenomena
Critical point
Doping
Equations of state
Insulators
Metal-insulator transition
Parameters
Phase diagrams
Phase separation
Superconductors
title Mott Quantum Critical Points at finite doping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mott%20Quantum%20Critical%20Points%20at%20finite%20doping&rft.jtitle=arXiv.org&rft.au=Chatzieleftheriou,%20Maria&rft.date=2022-03-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2203.02451&rft_dat=%3Cproquest%3E2637042823%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a951-54e7fdcf6833e9593e4743ef6d916b5bf45f16c87f6f7c4899d48c9eeb123eae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637042823&rft_id=info:pmid/&rfr_iscdi=true