Loading…

Counterdiabatic Optimised Local Driving

Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The problem of speeding up these proc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-10
Main Authors: Čepaitė, Ieva, Polkovnikov, Anatoli, Daley, Andrew J, Duncan, Callum W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Čepaitė, Ieva
Polkovnikov, Anatoli
Daley, Andrew J
Duncan, Callum W
description Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The problem of speeding up these processes has garnered a large amount of interest, resulting in a menagerie of approaches, most notably quantum optimal control and shortcuts to adiabaticity. The two approaches are complementary: optimal control manipulates control fields to steer the dynamics in the minimum allowed time while shortcuts to adiabaticity aim to retain the adiabatic condition upon speed-up. We outline a new method which combines the two methodologies and takes advantage of the strengths of each. The new technique improves upon approximate local counterdiabatic driving with the addition of time-dependent control fields. We refer to this new method as counterdiabatic optimised local driving (COLD) and we show that it can result in a substantial improvement when applied to annealing protocols, state preparation schemes, entanglement generation and population transfer on a lattice. We also demonstrate a new approach to the optimisation of control fields which does not require access to the wavefunction or the computation of system dynamics. COLD can be enhanced with existing advanced optimal control methods and we explore this using the chopped randomised basis method and gradient ascent pulse engineering.
doi_str_mv 10.48550/arxiv.2203.01948
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2637214178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637214178</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-e6aca9a1985715b8a9c2ed521678bd7e50f65ad752fb76d6ccffab7c14b6da7a3</originalsourceid><addsrcrecordid>eNotzU1LwzAYwPEgCI65D-Ct4MFTa_IkT5Iepb5MKOyy-3jyJhmznWk7_PgKevrffn_G7gRvlEXkj1S-86UB4LLholX2iq1ASlFbBXDDNtN05JyDNoAoV-yhG5dhjiVkcjRnX-3Oc_7MUwxVP3o6Vc8lX_LwccuuE52muPnvmu1fX_bdtu53b-_dU19Ti7aOmjy1JFqLRqCz1HqIAUFoY10wEXnSSMEgJGd00N6nRM54oZwOZEiu2f0fey7j1xKn-XAclzL8Hg-gpQGhhLHyB4uEQpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637214178</pqid></control><display><type>article</type><title>Counterdiabatic Optimised Local Driving</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Čepaitė, Ieva ; Polkovnikov, Anatoli ; Daley, Andrew J ; Duncan, Callum W</creator><creatorcontrib>Čepaitė, Ieva ; Polkovnikov, Anatoli ; Daley, Andrew J ; Duncan, Callum W</creatorcontrib><description>Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The problem of speeding up these processes has garnered a large amount of interest, resulting in a menagerie of approaches, most notably quantum optimal control and shortcuts to adiabaticity. The two approaches are complementary: optimal control manipulates control fields to steer the dynamics in the minimum allowed time while shortcuts to adiabaticity aim to retain the adiabatic condition upon speed-up. We outline a new method which combines the two methodologies and takes advantage of the strengths of each. The new technique improves upon approximate local counterdiabatic driving with the addition of time-dependent control fields. We refer to this new method as counterdiabatic optimised local driving (COLD) and we show that it can result in a substantial improvement when applied to annealing protocols, state preparation schemes, entanglement generation and population transfer on a lattice. We also demonstrate a new approach to the optimisation of control fields which does not require access to the wavefunction or the computation of system dynamics. COLD can be enhanced with existing advanced optimal control methods and we explore this using the chopped randomised basis method and gradient ascent pulse engineering.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2203.01948</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic conditions ; Control methods ; Optimal control ; Quantum computing ; System dynamics ; Time dependence</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2637214178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Čepaitė, Ieva</creatorcontrib><creatorcontrib>Polkovnikov, Anatoli</creatorcontrib><creatorcontrib>Daley, Andrew J</creatorcontrib><creatorcontrib>Duncan, Callum W</creatorcontrib><title>Counterdiabatic Optimised Local Driving</title><title>arXiv.org</title><description>Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The problem of speeding up these processes has garnered a large amount of interest, resulting in a menagerie of approaches, most notably quantum optimal control and shortcuts to adiabaticity. The two approaches are complementary: optimal control manipulates control fields to steer the dynamics in the minimum allowed time while shortcuts to adiabaticity aim to retain the adiabatic condition upon speed-up. We outline a new method which combines the two methodologies and takes advantage of the strengths of each. The new technique improves upon approximate local counterdiabatic driving with the addition of time-dependent control fields. We refer to this new method as counterdiabatic optimised local driving (COLD) and we show that it can result in a substantial improvement when applied to annealing protocols, state preparation schemes, entanglement generation and population transfer on a lattice. We also demonstrate a new approach to the optimisation of control fields which does not require access to the wavefunction or the computation of system dynamics. COLD can be enhanced with existing advanced optimal control methods and we explore this using the chopped randomised basis method and gradient ascent pulse engineering.</description><subject>Adiabatic conditions</subject><subject>Control methods</subject><subject>Optimal control</subject><subject>Quantum computing</subject><subject>System dynamics</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzU1LwzAYwPEgCI65D-Ct4MFTa_IkT5Iepb5MKOyy-3jyJhmznWk7_PgKevrffn_G7gRvlEXkj1S-86UB4LLholX2iq1ASlFbBXDDNtN05JyDNoAoV-yhG5dhjiVkcjRnX-3Oc_7MUwxVP3o6Vc8lX_LwccuuE52muPnvmu1fX_bdtu53b-_dU19Ti7aOmjy1JFqLRqCz1HqIAUFoY10wEXnSSMEgJGd00N6nRM54oZwOZEiu2f0fey7j1xKn-XAclzL8Hg-gpQGhhLHyB4uEQpA</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Čepaitė, Ieva</creator><creator>Polkovnikov, Anatoli</creator><creator>Daley, Andrew J</creator><creator>Duncan, Callum W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221024</creationdate><title>Counterdiabatic Optimised Local Driving</title><author>Čepaitė, Ieva ; Polkovnikov, Anatoli ; Daley, Andrew J ; Duncan, Callum W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-e6aca9a1985715b8a9c2ed521678bd7e50f65ad752fb76d6ccffab7c14b6da7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adiabatic conditions</topic><topic>Control methods</topic><topic>Optimal control</topic><topic>Quantum computing</topic><topic>System dynamics</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Čepaitė, Ieva</creatorcontrib><creatorcontrib>Polkovnikov, Anatoli</creatorcontrib><creatorcontrib>Daley, Andrew J</creatorcontrib><creatorcontrib>Duncan, Callum W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Čepaitė, Ieva</au><au>Polkovnikov, Anatoli</au><au>Daley, Andrew J</au><au>Duncan, Callum W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counterdiabatic Optimised Local Driving</atitle><jtitle>arXiv.org</jtitle><date>2022-10-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Adiabatic protocols are employed across a variety of quantum technologies, from implementing state preparation and individual operations that are building blocks of larger devices, to higher-level protocols in quantum annealing and adiabatic quantum computation. The problem of speeding up these processes has garnered a large amount of interest, resulting in a menagerie of approaches, most notably quantum optimal control and shortcuts to adiabaticity. The two approaches are complementary: optimal control manipulates control fields to steer the dynamics in the minimum allowed time while shortcuts to adiabaticity aim to retain the adiabatic condition upon speed-up. We outline a new method which combines the two methodologies and takes advantage of the strengths of each. The new technique improves upon approximate local counterdiabatic driving with the addition of time-dependent control fields. We refer to this new method as counterdiabatic optimised local driving (COLD) and we show that it can result in a substantial improvement when applied to annealing protocols, state preparation schemes, entanglement generation and population transfer on a lattice. We also demonstrate a new approach to the optimisation of control fields which does not require access to the wavefunction or the computation of system dynamics. COLD can be enhanced with existing advanced optimal control methods and we explore this using the chopped randomised basis method and gradient ascent pulse engineering.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2203.01948</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2637214178
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adiabatic conditions
Control methods
Optimal control
Quantum computing
System dynamics
Time dependence
title Counterdiabatic Optimised Local Driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counterdiabatic%20Optimised%20Local%20Driving&rft.jtitle=arXiv.org&rft.au=%C4%8Cepait%C4%97,%20Ieva&rft.date=2022-10-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2203.01948&rft_dat=%3Cproquest%3E2637214178%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-e6aca9a1985715b8a9c2ed521678bd7e50f65ad752fb76d6ccffab7c14b6da7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637214178&rft_id=info:pmid/&rfr_iscdi=true