Loading…
Electric field induced macroscopic cellular phase of nanoparticles
A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the res...
Saved in:
Published in: | Soft matter 2022-03, Vol.18 (1), p.1991-1996 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the result of electrophoretic assembly into a two-dimensional configuration followed by spinodal decomposition into particle-rich walls and particle-poor cells mediated principally by electrohydrodynamic flow. This mechanistic understanding reveals two characteristics needed for a cellular phase to form, namely (1) a system that is considered two dimensional and (2) short-range attractive, long-range repulsive interparticle interactions. In addition to determining the mechanism underpinning the formation of the cellular phase, this work presents a method to reversibly assemble microscale continuous structures out of nanoscale particles in a manner that may enable the creation of materials that impact diverse fields including energy storage and filtration.
Nanoparticles assemble into a macroscopic cellular phase upon the simultaneous application of an AC and DC voltage. First, the particles move through electrophoresis into a 2D film and then electrohydrodynamic flows cause spinodal decomposition. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/d1sm01650d |