Loading…

Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks

Multi-functional porous coatings are promising candidates to improve overall heat transfer performances of heat sinks that are essential for thermal management of various electronic devices and mobility platforms. However, owing to the intrinsic limitations of the heat sinks comprising of the high-a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2022-03, Vol.184, p.122344, Article 122344
Main Authors: Lee, Jaemin, Kyeong, Daehyeon, Kim, Jihun, Choi, Wonjoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723
cites cdi_FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723
container_end_page
container_issue
container_start_page 122344
container_title International journal of heat and mass transfer
container_volume 184
creator Lee, Jaemin
Kyeong, Daehyeon
Kim, Jihun
Choi, Wonjoon
description Multi-functional porous coatings are promising candidates to improve overall heat transfer performances of heat sinks that are essential for thermal management of various electronic devices and mobility platforms. However, owing to the intrinsic limitations of the heat sinks comprising of the high-aspect-ratio fin-like structures, fabricating functional coatings involves complex process which incurs high-cost and long-time process. Herein, we report tunable and scalable layer-by-layer (LbL) self-assembly of multi-walled carbon nanotube (MWCNT)-polyethyleneimine (PEI) coatings on aluminum heat sinks for enhanced transient and static heat transfer performances. The repetitive immersing and rinsing of the negatively and positively charged solutions with carboxylic group-functionalized MWCNTs and PEI led to the electrostatic deposition of the LbL self-assembled MWCNT-PEI coatings on the aluminum heat sinks. All LbL coatings (50–250 nm in thickness) employing the fiber-like percolation networks of MWCNT-PEI could induce the morphological transition like the increased surface roughness while the black-like surface from carbon elements might provide the increased emissivity for the aluminum heat sinks. The multifunctional characteristics of the MWCNT-PEI coatings reinforced active surface area, fluid mixing and surface emissivity of the bare heat sink, thereby achieving the enhanced heat transfer coefficient (∼19%) and thermal resistance (16%). The optimal design of the porous coatings according to variation in applied thermal energy was elucidated by the comparable analysis between 10, 20, and 30 bilayers of the LbL MWCNT-PEI coatings. The developed LbL coatings can pave the way for effectively mitigating thermal shock or overload in transient and static operating conditions for a wide range of applications involving thermal energy dissipation. Graphical abstract [Display omitted] .
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.122344
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637398134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021014435</els_id><sourcerecordid>2637398134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723</originalsourceid><addsrcrecordid>eNqNkMFuGyEQhlGVSnHcvANSLrngwsIu7C2V1SaNLPXSnhHGQ8x2DS7gSnvps4eNk1MvOTHAzKf5P4RuGV0xyrrPw8oPezDlYHIuyYTsIK0a2rAVaxouxAe0YEr2pGGqv0ALSpkkPWf0El3lPMxXKroF-rcxEySyncg4FzjD6EhFwmE7wg67U7DFx2BGbKMpPjxlHB22Jm1jwMGEWE5bIMc4TlD20wjBH3wA7GLCEPYm2AqZ18RvO87jLw_Zh9_5E_rozJjh-vVcol_fvv5cP5DNj_vv6y8bYrmkhZiudZwzEB1zO9EJ6JtOKi5b1naKOyudapm1olVyB67nbTWgjKgJrZJUNnyJbs7cY4p_TpCLHuIp1VhZNx2XvFeMi9p1d-6yKeacwOlj8geTJs2onq3rQf9vXc_W9dl6RTyeEVDT_PX1N1sPswafwBa9i_79sGfLk5k-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637398134</pqid></control><display><type>article</type><title>Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lee, Jaemin ; Kyeong, Daehyeon ; Kim, Jihun ; Choi, Wonjoon</creator><creatorcontrib>Lee, Jaemin ; Kyeong, Daehyeon ; Kim, Jihun ; Choi, Wonjoon</creatorcontrib><description>Multi-functional porous coatings are promising candidates to improve overall heat transfer performances of heat sinks that are essential for thermal management of various electronic devices and mobility platforms. However, owing to the intrinsic limitations of the heat sinks comprising of the high-aspect-ratio fin-like structures, fabricating functional coatings involves complex process which incurs high-cost and long-time process. Herein, we report tunable and scalable layer-by-layer (LbL) self-assembly of multi-walled carbon nanotube (MWCNT)-polyethyleneimine (PEI) coatings on aluminum heat sinks for enhanced transient and static heat transfer performances. The repetitive immersing and rinsing of the negatively and positively charged solutions with carboxylic group-functionalized MWCNTs and PEI led to the electrostatic deposition of the LbL self-assembled MWCNT-PEI coatings on the aluminum heat sinks. All LbL coatings (50–250 nm in thickness) employing the fiber-like percolation networks of MWCNT-PEI could induce the morphological transition like the increased surface roughness while the black-like surface from carbon elements might provide the increased emissivity for the aluminum heat sinks. The multifunctional characteristics of the MWCNT-PEI coatings reinforced active surface area, fluid mixing and surface emissivity of the bare heat sink, thereby achieving the enhanced heat transfer coefficient (∼19%) and thermal resistance (16%). The optimal design of the porous coatings according to variation in applied thermal energy was elucidated by the comparable analysis between 10, 20, and 30 bilayers of the LbL MWCNT-PEI coatings. The developed LbL coatings can pave the way for effectively mitigating thermal shock or overload in transient and static operating conditions for a wide range of applications involving thermal energy dissipation. Graphical abstract [Display omitted] .</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122344</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Bilayers ; Carbon ; Carbon nanotube ; Coatings ; Convection ; Electronic devices ; Emissivity ; Energy dissipation ; Heat sink ; Heat sinks ; Heat transfer ; Heat transfer coefficients ; Heat transfer enhancement ; High aspect ratio ; Layer-by-layer ; Multi wall carbon nanotubes ; Percolation ; Polyethyleneimine ; Porous coating ; Self-assembly ; Surface roughness ; Thermal energy ; Thermal management ; Thermal resistance ; Thermal shock</subject><ispartof>International journal of heat and mass transfer, 2022-03, Vol.184, p.122344, Article 122344</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723</citedby><cites>FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jaemin</creatorcontrib><creatorcontrib>Kyeong, Daehyeon</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Choi, Wonjoon</creatorcontrib><title>Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks</title><title>International journal of heat and mass transfer</title><description>Multi-functional porous coatings are promising candidates to improve overall heat transfer performances of heat sinks that are essential for thermal management of various electronic devices and mobility platforms. However, owing to the intrinsic limitations of the heat sinks comprising of the high-aspect-ratio fin-like structures, fabricating functional coatings involves complex process which incurs high-cost and long-time process. Herein, we report tunable and scalable layer-by-layer (LbL) self-assembly of multi-walled carbon nanotube (MWCNT)-polyethyleneimine (PEI) coatings on aluminum heat sinks for enhanced transient and static heat transfer performances. The repetitive immersing and rinsing of the negatively and positively charged solutions with carboxylic group-functionalized MWCNTs and PEI led to the electrostatic deposition of the LbL self-assembled MWCNT-PEI coatings on the aluminum heat sinks. All LbL coatings (50–250 nm in thickness) employing the fiber-like percolation networks of MWCNT-PEI could induce the morphological transition like the increased surface roughness while the black-like surface from carbon elements might provide the increased emissivity for the aluminum heat sinks. The multifunctional characteristics of the MWCNT-PEI coatings reinforced active surface area, fluid mixing and surface emissivity of the bare heat sink, thereby achieving the enhanced heat transfer coefficient (∼19%) and thermal resistance (16%). The optimal design of the porous coatings according to variation in applied thermal energy was elucidated by the comparable analysis between 10, 20, and 30 bilayers of the LbL MWCNT-PEI coatings. The developed LbL coatings can pave the way for effectively mitigating thermal shock or overload in transient and static operating conditions for a wide range of applications involving thermal energy dissipation. Graphical abstract [Display omitted] .</description><subject>Aluminum</subject><subject>Bilayers</subject><subject>Carbon</subject><subject>Carbon nanotube</subject><subject>Coatings</subject><subject>Convection</subject><subject>Electronic devices</subject><subject>Emissivity</subject><subject>Energy dissipation</subject><subject>Heat sink</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Heat transfer enhancement</subject><subject>High aspect ratio</subject><subject>Layer-by-layer</subject><subject>Multi wall carbon nanotubes</subject><subject>Percolation</subject><subject>Polyethyleneimine</subject><subject>Porous coating</subject><subject>Self-assembly</subject><subject>Surface roughness</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Thermal shock</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMFuGyEQhlGVSnHcvANSLrngwsIu7C2V1SaNLPXSnhHGQ8x2DS7gSnvps4eNk1MvOTHAzKf5P4RuGV0xyrrPw8oPezDlYHIuyYTsIK0a2rAVaxouxAe0YEr2pGGqv0ALSpkkPWf0El3lPMxXKroF-rcxEySyncg4FzjD6EhFwmE7wg67U7DFx2BGbKMpPjxlHB22Jm1jwMGEWE5bIMc4TlD20wjBH3wA7GLCEPYm2AqZ18RvO87jLw_Zh9_5E_rozJjh-vVcol_fvv5cP5DNj_vv6y8bYrmkhZiudZwzEB1zO9EJ6JtOKi5b1naKOyudapm1olVyB67nbTWgjKgJrZJUNnyJbs7cY4p_TpCLHuIp1VhZNx2XvFeMi9p1d-6yKeacwOlj8geTJs2onq3rQf9vXc_W9dl6RTyeEVDT_PX1N1sPswafwBa9i_79sGfLk5k-</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Lee, Jaemin</creator><creator>Kyeong, Daehyeon</creator><creator>Kim, Jihun</creator><creator>Choi, Wonjoon</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202203</creationdate><title>Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks</title><author>Lee, Jaemin ; Kyeong, Daehyeon ; Kim, Jihun ; Choi, Wonjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Bilayers</topic><topic>Carbon</topic><topic>Carbon nanotube</topic><topic>Coatings</topic><topic>Convection</topic><topic>Electronic devices</topic><topic>Emissivity</topic><topic>Energy dissipation</topic><topic>Heat sink</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Heat transfer enhancement</topic><topic>High aspect ratio</topic><topic>Layer-by-layer</topic><topic>Multi wall carbon nanotubes</topic><topic>Percolation</topic><topic>Polyethyleneimine</topic><topic>Porous coating</topic><topic>Self-assembly</topic><topic>Surface roughness</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Thermal shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaemin</creatorcontrib><creatorcontrib>Kyeong, Daehyeon</creatorcontrib><creatorcontrib>Kim, Jihun</creatorcontrib><creatorcontrib>Choi, Wonjoon</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaemin</au><au>Kyeong, Daehyeon</au><au>Kim, Jihun</au><au>Choi, Wonjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-03</date><risdate>2022</risdate><volume>184</volume><spage>122344</spage><pages>122344-</pages><artnum>122344</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>Multi-functional porous coatings are promising candidates to improve overall heat transfer performances of heat sinks that are essential for thermal management of various electronic devices and mobility platforms. However, owing to the intrinsic limitations of the heat sinks comprising of the high-aspect-ratio fin-like structures, fabricating functional coatings involves complex process which incurs high-cost and long-time process. Herein, we report tunable and scalable layer-by-layer (LbL) self-assembly of multi-walled carbon nanotube (MWCNT)-polyethyleneimine (PEI) coatings on aluminum heat sinks for enhanced transient and static heat transfer performances. The repetitive immersing and rinsing of the negatively and positively charged solutions with carboxylic group-functionalized MWCNTs and PEI led to the electrostatic deposition of the LbL self-assembled MWCNT-PEI coatings on the aluminum heat sinks. All LbL coatings (50–250 nm in thickness) employing the fiber-like percolation networks of MWCNT-PEI could induce the morphological transition like the increased surface roughness while the black-like surface from carbon elements might provide the increased emissivity for the aluminum heat sinks. The multifunctional characteristics of the MWCNT-PEI coatings reinforced active surface area, fluid mixing and surface emissivity of the bare heat sink, thereby achieving the enhanced heat transfer coefficient (∼19%) and thermal resistance (16%). The optimal design of the porous coatings according to variation in applied thermal energy was elucidated by the comparable analysis between 10, 20, and 30 bilayers of the LbL MWCNT-PEI coatings. The developed LbL coatings can pave the way for effectively mitigating thermal shock or overload in transient and static operating conditions for a wide range of applications involving thermal energy dissipation. Graphical abstract [Display omitted] .</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122344</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-03, Vol.184, p.122344, Article 122344
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2637398134
source ScienceDirect Freedom Collection 2022-2024
subjects Aluminum
Bilayers
Carbon
Carbon nanotube
Coatings
Convection
Electronic devices
Emissivity
Energy dissipation
Heat sink
Heat sinks
Heat transfer
Heat transfer coefficients
Heat transfer enhancement
High aspect ratio
Layer-by-layer
Multi wall carbon nanotubes
Percolation
Polyethyleneimine
Porous coating
Self-assembly
Surface roughness
Thermal energy
Thermal management
Thermal resistance
Thermal shock
title Layer-by-layer self-assembled functional coatings of carbon nanotube-polyethylenimine for enhanced heat transfer of heat sinks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-by-layer%20self-assembled%20functional%20coatings%20of%20carbon%20nanotube-polyethylenimine%20for%20enhanced%20heat%20transfer%20of%20heat%20sinks&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Lee,%20Jaemin&rft.date=2022-03&rft.volume=184&rft.spage=122344&rft.pages=122344-&rft.artnum=122344&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122344&rft_dat=%3Cproquest_cross%3E2637398134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-a65f331e461fd464e9267837515683fc7f851cc4587def9352348a4046c870723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637398134&rft_id=info:pmid/&rfr_iscdi=true