Loading…
Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity
This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed u...
Saved in:
Published in: | IEEE transactions on wireless communications 2022-03, Vol.21 (3), p.1806-1822 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3 |
container_end_page | 1822 |
container_issue | 3 |
container_start_page | 1806 |
container_title | IEEE transactions on wireless communications |
container_volume | 21 |
creator | Khalili, Ata Monfared, Ehsan Mohammadi Zargari, Shayan Javan, Mohammad Reza Yamchi, Nader Mokari Jorswieck, Eduard Axel |
description | This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave ( \mu \text{W} ) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the \mu \text{W} channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for \mu \text{W} ; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS. |
doi_str_mv | 10.1109/TWC.2021.3107306 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637438038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9526285</ieee_id><sourcerecordid>2637438038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</originalsourceid><addsrcrecordid>eNo9kElLw0AUgIMoWKt3wcuA59RZMkuOJS4ttCpd9BimyYtMMZM6M1HqrzehxdN7PL63fVF0TfCIEJzerd6zEcWUjBjBkmFxEg0I5yqmNFGnfc5ETKgU59GF91uMiRScDyK7AN-0rgA011Z_QA02oKpxaOW09bUJ6LX5AYfmxpra_OpgGouMRevxWzz23vgAJVpMl2gC4RmCR8t2t2tcX93s0X2rP1HWWAtFMN8m7C-js0p_erg6xmG0fnxYZZN49vI0zcazuKApCbHaUC5ZdzLTFahiw1MpVColBlxJUjIMlElVyZQqmnAmEyilkkKnBcU8USUbRreHuTvXfLXgQ77tvrTdypyKjmcKM9VR-EAVrvHeQZXvnKm12-cE573VvLOa91bzo9Wu5ebQYgDgH085FVRx9gduiXJK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637438038</pqid></control><display><type>article</type><title>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Khalili, Ata ; Monfared, Ehsan Mohammadi ; Zargari, Shayan ; Javan, Mohammad Reza ; Yamchi, Nader Mokari ; Jorswieck, Eduard Axel</creator><creatorcontrib>Khalili, Ata ; Monfared, Ehsan Mohammadi ; Zargari, Shayan ; Javan, Mohammad Reza ; Yamchi, Nader Mokari ; Jorswieck, Eduard Axel</creatorcontrib><description><![CDATA[This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave (<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.]]></description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3107306</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Beamforming ; deep Q-network (DQN) learning ; Line of sight ; Machine learning ; Millimeter waves ; Minimization ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; Optimization ; reconfigurable intelligent surface (RIS) ; Relays ; Resource allocation ; Resource management ; Subcarriers ; Trajectory ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-03, Vol.21 (3), p.1806-1822</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</citedby><cites>FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</cites><orcidid>0000-0001-5364-8888 ; 0000-0001-9364-315X ; 0000-0003-1660-4733 ; 0000-0002-3845-1144 ; 0000-0001-7893-8435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9526285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Khalili, Ata</creatorcontrib><creatorcontrib>Monfared, Ehsan Mohammadi</creatorcontrib><creatorcontrib>Zargari, Shayan</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Yamchi, Nader Mokari</creatorcontrib><creatorcontrib>Jorswieck, Eduard Axel</creatorcontrib><title>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description><![CDATA[This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave (<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.]]></description><subject>Algorithms</subject><subject>Approximation</subject><subject>Beamforming</subject><subject>deep Q-network (DQN) learning</subject><subject>Line of sight</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>Minimization</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>reconfigurable intelligent surface (RIS)</subject><subject>Relays</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Subcarriers</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kElLw0AUgIMoWKt3wcuA59RZMkuOJS4ttCpd9BimyYtMMZM6M1HqrzehxdN7PL63fVF0TfCIEJzerd6zEcWUjBjBkmFxEg0I5yqmNFGnfc5ETKgU59GF91uMiRScDyK7AN-0rgA011Z_QA02oKpxaOW09bUJ6LX5AYfmxpra_OpgGouMRevxWzz23vgAJVpMl2gC4RmCR8t2t2tcX93s0X2rP1HWWAtFMN8m7C-js0p_erg6xmG0fnxYZZN49vI0zcazuKApCbHaUC5ZdzLTFahiw1MpVColBlxJUjIMlElVyZQqmnAmEyilkkKnBcU8USUbRreHuTvXfLXgQ77tvrTdypyKjmcKM9VR-EAVrvHeQZXvnKm12-cE573VvLOa91bzo9Wu5ebQYgDgH085FVRx9gduiXJK</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Khalili, Ata</creator><creator>Monfared, Ehsan Mohammadi</creator><creator>Zargari, Shayan</creator><creator>Javan, Mohammad Reza</creator><creator>Yamchi, Nader Mokari</creator><creator>Jorswieck, Eduard Axel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid><orcidid>https://orcid.org/0000-0003-1660-4733</orcidid><orcidid>https://orcid.org/0000-0002-3845-1144</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid></search><sort><creationdate>202203</creationdate><title>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</title><author>Khalili, Ata ; Monfared, Ehsan Mohammadi ; Zargari, Shayan ; Javan, Mohammad Reza ; Yamchi, Nader Mokari ; Jorswieck, Eduard Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Beamforming</topic><topic>deep Q-network (DQN) learning</topic><topic>Line of sight</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>Minimization</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>reconfigurable intelligent surface (RIS)</topic><topic>Relays</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Subcarriers</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalili, Ata</creatorcontrib><creatorcontrib>Monfared, Ehsan Mohammadi</creatorcontrib><creatorcontrib>Zargari, Shayan</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Yamchi, Nader Mokari</creatorcontrib><creatorcontrib>Jorswieck, Eduard Axel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalili, Ata</au><au>Monfared, Ehsan Mohammadi</au><au>Zargari, Shayan</au><au>Javan, Mohammad Reza</au><au>Yamchi, Nader Mokari</au><au>Jorswieck, Eduard Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-03</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>1806</spage><epage>1822</epage><pages>1806-1822</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract><![CDATA[This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave (<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3107306</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid><orcidid>https://orcid.org/0000-0003-1660-4733</orcidid><orcidid>https://orcid.org/0000-0002-3845-1144</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2022-03, Vol.21 (3), p.1806-1822 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2637438038 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Approximation Beamforming deep Q-network (DQN) learning Line of sight Machine learning Millimeter waves Minimization NOMA non-orthogonal multiple access (NOMA) Nonorthogonal multiple access Optimization reconfigurable intelligent surface (RIS) Relays Resource allocation Resource management Subcarriers Trajectory Unmanned aerial vehicle (UAV) Unmanned aerial vehicles Wireless communication |
title | Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20Management%20for%20Transmit%20Power%20Minimization%20in%20UAV-Assisted%20RIS%20HetNets%20Supported%20by%20Dual%20Connectivity&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Khalili,%20Ata&rft.date=2022-03&rft.volume=21&rft.issue=3&rft.spage=1806&rft.epage=1822&rft.pages=1806-1822&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3107306&rft_dat=%3Cproquest_cross%3E2637438038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637438038&rft_id=info:pmid/&rft_ieee_id=9526285&rfr_iscdi=true |