Loading…

Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity

This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed u...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2022-03, Vol.21 (3), p.1806-1822
Main Authors: Khalili, Ata, Monfared, Ehsan Mohammadi, Zargari, Shayan, Javan, Mohammad Reza, Yamchi, Nader Mokari, Jorswieck, Eduard Axel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3
cites cdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3
container_end_page 1822
container_issue 3
container_start_page 1806
container_title IEEE transactions on wireless communications
container_volume 21
creator Khalili, Ata
Monfared, Ehsan Mohammadi
Zargari, Shayan
Javan, Mohammad Reza
Yamchi, Nader Mokari
Jorswieck, Eduard Axel
description This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave ( \mu \text{W} ) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the \mu \text{W} channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for \mu \text{W} ; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.
doi_str_mv 10.1109/TWC.2021.3107306
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637438038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9526285</ieee_id><sourcerecordid>2637438038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</originalsourceid><addsrcrecordid>eNo9kElLw0AUgIMoWKt3wcuA59RZMkuOJS4ttCpd9BimyYtMMZM6M1HqrzehxdN7PL63fVF0TfCIEJzerd6zEcWUjBjBkmFxEg0I5yqmNFGnfc5ETKgU59GF91uMiRScDyK7AN-0rgA011Z_QA02oKpxaOW09bUJ6LX5AYfmxpra_OpgGouMRevxWzz23vgAJVpMl2gC4RmCR8t2t2tcX93s0X2rP1HWWAtFMN8m7C-js0p_erg6xmG0fnxYZZN49vI0zcazuKApCbHaUC5ZdzLTFahiw1MpVColBlxJUjIMlElVyZQqmnAmEyilkkKnBcU8USUbRreHuTvXfLXgQ77tvrTdypyKjmcKM9VR-EAVrvHeQZXvnKm12-cE573VvLOa91bzo9Wu5ebQYgDgH085FVRx9gduiXJK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637438038</pqid></control><display><type>article</type><title>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Khalili, Ata ; Monfared, Ehsan Mohammadi ; Zargari, Shayan ; Javan, Mohammad Reza ; Yamchi, Nader Mokari ; Jorswieck, Eduard Axel</creator><creatorcontrib>Khalili, Ata ; Monfared, Ehsan Mohammadi ; Zargari, Shayan ; Javan, Mohammad Reza ; Yamchi, Nader Mokari ; Jorswieck, Eduard Axel</creatorcontrib><description><![CDATA[This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave (<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.]]></description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3107306</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Beamforming ; deep Q-network (DQN) learning ; Line of sight ; Machine learning ; Millimeter waves ; Minimization ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; Optimization ; reconfigurable intelligent surface (RIS) ; Relays ; Resource allocation ; Resource management ; Subcarriers ; Trajectory ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-03, Vol.21 (3), p.1806-1822</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</citedby><cites>FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</cites><orcidid>0000-0001-5364-8888 ; 0000-0001-9364-315X ; 0000-0003-1660-4733 ; 0000-0002-3845-1144 ; 0000-0001-7893-8435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9526285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Khalili, Ata</creatorcontrib><creatorcontrib>Monfared, Ehsan Mohammadi</creatorcontrib><creatorcontrib>Zargari, Shayan</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Yamchi, Nader Mokari</creatorcontrib><creatorcontrib>Jorswieck, Eduard Axel</creatorcontrib><title>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description><![CDATA[This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave (<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.]]></description><subject>Algorithms</subject><subject>Approximation</subject><subject>Beamforming</subject><subject>deep Q-network (DQN) learning</subject><subject>Line of sight</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>Minimization</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>reconfigurable intelligent surface (RIS)</subject><subject>Relays</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Subcarriers</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kElLw0AUgIMoWKt3wcuA59RZMkuOJS4ttCpd9BimyYtMMZM6M1HqrzehxdN7PL63fVF0TfCIEJzerd6zEcWUjBjBkmFxEg0I5yqmNFGnfc5ETKgU59GF91uMiRScDyK7AN-0rgA011Z_QA02oKpxaOW09bUJ6LX5AYfmxpra_OpgGouMRevxWzz23vgAJVpMl2gC4RmCR8t2t2tcX93s0X2rP1HWWAtFMN8m7C-js0p_erg6xmG0fnxYZZN49vI0zcazuKApCbHaUC5ZdzLTFahiw1MpVColBlxJUjIMlElVyZQqmnAmEyilkkKnBcU8USUbRreHuTvXfLXgQ77tvrTdypyKjmcKM9VR-EAVrvHeQZXvnKm12-cE573VvLOa91bzo9Wu5ebQYgDgH085FVRx9gduiXJK</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Khalili, Ata</creator><creator>Monfared, Ehsan Mohammadi</creator><creator>Zargari, Shayan</creator><creator>Javan, Mohammad Reza</creator><creator>Yamchi, Nader Mokari</creator><creator>Jorswieck, Eduard Axel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid><orcidid>https://orcid.org/0000-0003-1660-4733</orcidid><orcidid>https://orcid.org/0000-0002-3845-1144</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid></search><sort><creationdate>202203</creationdate><title>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</title><author>Khalili, Ata ; Monfared, Ehsan Mohammadi ; Zargari, Shayan ; Javan, Mohammad Reza ; Yamchi, Nader Mokari ; Jorswieck, Eduard Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Beamforming</topic><topic>deep Q-network (DQN) learning</topic><topic>Line of sight</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>Minimization</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>reconfigurable intelligent surface (RIS)</topic><topic>Relays</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Subcarriers</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalili, Ata</creatorcontrib><creatorcontrib>Monfared, Ehsan Mohammadi</creatorcontrib><creatorcontrib>Zargari, Shayan</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Yamchi, Nader Mokari</creatorcontrib><creatorcontrib>Jorswieck, Eduard Axel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalili, Ata</au><au>Monfared, Ehsan Mohammadi</au><au>Zargari, Shayan</au><au>Javan, Mohammad Reza</au><au>Yamchi, Nader Mokari</au><au>Jorswieck, Eduard Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-03</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>1806</spage><epage>1822</epage><pages>1806-1822</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract><![CDATA[This paper proposes a novel approach to improve the performance of a heterogeneous network (HetNet) supported by dual connectivity (DC) by adopting multiple unmanned aerial vehicles (UAVs) as passive relays that carry reconfigurable intelligent surfaces (RISs). More specifically, RISs are deployed under the UAVs termed as UAVs-RISs that operate over the micro-wave (<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>) channel in the sky to sustain a strong line-of-sight (LoS) connection with the ground users. The macro-cell operates over the <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> channel based on orthogonal multiple access (OMA), while small base stations (SBSs) operate over the millimeter-wave (mmW) channel based on non-orthogonal multiple access (NOMA). We study the problem of total transmit power minimization by jointly optimizing the trajectory/velocity of each UAV, RISs' phase shifts, subcarrier allocations, and active beamformers at each BS. The underlying problem is highly non-convex and the global optimal solution is intractable. To handle it, we decompose the original problem into two subproblems, i.e., a subproblem which deals with the UAVs' trajectories/velocities, RISs' phase shifts, and subcarrier allocations for <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>; and a subproblem for active beamforming design and subcarrier allocation for mmW. In particular, we solve the first subproblem via the dueling deep Q-Network (DQN) learning approach by developing a distributed algorithm which leads to a better policy evaluation. Then, we solve the active beamforming design and subcarrier allocation for the mmW via the successive convex approximation (SCA) method. Simulation results exhibit the effectiveness of the proposed resource allocation scheme compared to other baseline schemes. In particular, it is revealed that by deploying UAVs-RISs, the transmit power can be reduced by 6 dBm while maintaining similar guaranteed QoS.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3107306</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5364-8888</orcidid><orcidid>https://orcid.org/0000-0001-9364-315X</orcidid><orcidid>https://orcid.org/0000-0003-1660-4733</orcidid><orcidid>https://orcid.org/0000-0002-3845-1144</orcidid><orcidid>https://orcid.org/0000-0001-7893-8435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-03, Vol.21 (3), p.1806-1822
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2637438038
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Approximation
Beamforming
deep Q-network (DQN) learning
Line of sight
Machine learning
Millimeter waves
Minimization
NOMA
non-orthogonal multiple access (NOMA)
Nonorthogonal multiple access
Optimization
reconfigurable intelligent surface (RIS)
Relays
Resource allocation
Resource management
Subcarriers
Trajectory
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communication
title Resource Management for Transmit Power Minimization in UAV-Assisted RIS HetNets Supported by Dual Connectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20Management%20for%20Transmit%20Power%20Minimization%20in%20UAV-Assisted%20RIS%20HetNets%20Supported%20by%20Dual%20Connectivity&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Khalili,%20Ata&rft.date=2022-03&rft.volume=21&rft.issue=3&rft.spage=1806&rft.epage=1822&rft.pages=1806-1822&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3107306&rft_dat=%3Cproquest_cross%3E2637438038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8b25735363afe8cb597689770e0f71d30e2378f7928245374ed7876a9c20548d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637438038&rft_id=info:pmid/&rft_ieee_id=9526285&rfr_iscdi=true