Loading…
AMCRN: Few-Shot Learning for Automatic Modulation Classification
Deep learning (DL) has been widely applied in automatic modulation classification (AMC), while the superb performance highly depends on high-quality datasets. Motivated by this, the AMC under few-shot conditions is considered in this letter, where a novel network architecture is proposed, namely aut...
Saved in:
Published in: | IEEE communications letters 2022-03, Vol.26 (3), p.542-546 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3 |
container_end_page | 546 |
container_issue | 3 |
container_start_page | 542 |
container_title | IEEE communications letters |
container_volume | 26 |
creator | Zhou, Quan Zhang, Ronghui Mu, Junsheng Zhang, Hongming Zhang, Fangpei Jing, Xiaojun |
description | Deep learning (DL) has been widely applied in automatic modulation classification (AMC), while the superb performance highly depends on high-quality datasets. Motivated by this, the AMC under few-shot conditions is considered in this letter, where a novel network architecture is proposed, namely automatic modulation classification relation network (AMCRN), and verified with the baseline methods. Experimental results state that the accuracy of proposed AMCRN exceeds 90% and 10% to 50% improvements are obtained compared with classical schemes when the signal-to-noise ratio (SNR) is greater than −2 dB. |
doi_str_mv | 10.1109/LCOMM.2021.3135688 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2637441445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9650842</ieee_id><sourcerecordid>2637441445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3</originalsourceid><addsrcrecordid>eNo9kFtLxDAQhYMouK7-AX0p-Nw19yY-WcquCq0LXp5Dtk20S7dZkxbx35u94MvMHOacGfgAuEZwhhCUd2WxrKoZhhjNCCKMC3ECJogxkeJYTuMMhUyzTIpzcBHCGkIoMEMT8JBXxevLfbIwP-nblxuS0mjft_1nYp1P8nFwGz20dVK5Zuzi5Pqk6HQIrW3rvbwEZ1Z3wVwd-xR8LObvxVNaLh-fi7xMayzZkNqac65XusEacZhJQ4iR1sQlllozaWuCG0tXkNAGao0Ey6SkwmQ2SgkNmYLbw92td9-jCYNau9H38aXCnGSUIkpZdOGDq_YuBG-s2vp2o_2vQlDtSKk9KbUjpY6kYujmEGqNMf8ByRkUFJM_3TlkAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637441445</pqid></control><display><type>article</type><title>AMCRN: Few-Shot Learning for Automatic Modulation Classification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou, Quan ; Zhang, Ronghui ; Mu, Junsheng ; Zhang, Hongming ; Zhang, Fangpei ; Jing, Xiaojun</creator><creatorcontrib>Zhou, Quan ; Zhang, Ronghui ; Mu, Junsheng ; Zhang, Hongming ; Zhang, Fangpei ; Jing, Xiaojun</creatorcontrib><description>Deep learning (DL) has been widely applied in automatic modulation classification (AMC), while the superb performance highly depends on high-quality datasets. Motivated by this, the AMC under few-shot conditions is considered in this letter, where a novel network architecture is proposed, namely automatic modulation classification relation network (AMCRN), and verified with the baseline methods. Experimental results state that the accuracy of proposed AMCRN exceeds 90% and 10% to 50% improvements are obtained compared with classical schemes when the signal-to-noise ratio (SNR) is greater than −2 dB.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3135688</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>automatic modulation classification ; Classification ; Computer architecture ; Convolution ; Convolutional neural networks ; Deep learning ; Feature extraction ; Few shot learning ; Kernel ; Machine learning ; Modulation ; relation network ; Signal to noise ratio ; Training</subject><ispartof>IEEE communications letters, 2022-03, Vol.26 (3), p.542-546</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3</citedby><cites>FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3</cites><orcidid>0000-0003-2560-4364 ; 0000-0002-5352-8314 ; 0000-0001-7838-0638 ; 0000-0003-1547-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9650842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhang, Ronghui</creatorcontrib><creatorcontrib>Mu, Junsheng</creatorcontrib><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Zhang, Fangpei</creatorcontrib><creatorcontrib>Jing, Xiaojun</creatorcontrib><title>AMCRN: Few-Shot Learning for Automatic Modulation Classification</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Deep learning (DL) has been widely applied in automatic modulation classification (AMC), while the superb performance highly depends on high-quality datasets. Motivated by this, the AMC under few-shot conditions is considered in this letter, where a novel network architecture is proposed, namely automatic modulation classification relation network (AMCRN), and verified with the baseline methods. Experimental results state that the accuracy of proposed AMCRN exceeds 90% and 10% to 50% improvements are obtained compared with classical schemes when the signal-to-noise ratio (SNR) is greater than −2 dB.</description><subject>automatic modulation classification</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Few shot learning</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Modulation</subject><subject>relation network</subject><subject>Signal to noise ratio</subject><subject>Training</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLxDAQhYMouK7-AX0p-Nw19yY-WcquCq0LXp5Dtk20S7dZkxbx35u94MvMHOacGfgAuEZwhhCUd2WxrKoZhhjNCCKMC3ECJogxkeJYTuMMhUyzTIpzcBHCGkIoMEMT8JBXxevLfbIwP-nblxuS0mjft_1nYp1P8nFwGz20dVK5Zuzi5Pqk6HQIrW3rvbwEZ1Z3wVwd-xR8LObvxVNaLh-fi7xMayzZkNqac65XusEacZhJQ4iR1sQlllozaWuCG0tXkNAGao0Ey6SkwmQ2SgkNmYLbw92td9-jCYNau9H38aXCnGSUIkpZdOGDq_YuBG-s2vp2o_2vQlDtSKk9KbUjpY6kYujmEGqNMf8ByRkUFJM_3TlkAA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhou, Quan</creator><creator>Zhang, Ronghui</creator><creator>Mu, Junsheng</creator><creator>Zhang, Hongming</creator><creator>Zhang, Fangpei</creator><creator>Jing, Xiaojun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2560-4364</orcidid><orcidid>https://orcid.org/0000-0002-5352-8314</orcidid><orcidid>https://orcid.org/0000-0001-7838-0638</orcidid><orcidid>https://orcid.org/0000-0003-1547-3065</orcidid></search><sort><creationdate>20220301</creationdate><title>AMCRN: Few-Shot Learning for Automatic Modulation Classification</title><author>Zhou, Quan ; Zhang, Ronghui ; Mu, Junsheng ; Zhang, Hongming ; Zhang, Fangpei ; Jing, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>automatic modulation classification</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Few shot learning</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Modulation</topic><topic>relation network</topic><topic>Signal to noise ratio</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhang, Ronghui</creatorcontrib><creatorcontrib>Mu, Junsheng</creatorcontrib><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Zhang, Fangpei</creatorcontrib><creatorcontrib>Jing, Xiaojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Quan</au><au>Zhang, Ronghui</au><au>Mu, Junsheng</au><au>Zhang, Hongming</au><au>Zhang, Fangpei</au><au>Jing, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMCRN: Few-Shot Learning for Automatic Modulation Classification</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>542</spage><epage>546</epage><pages>542-546</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Deep learning (DL) has been widely applied in automatic modulation classification (AMC), while the superb performance highly depends on high-quality datasets. Motivated by this, the AMC under few-shot conditions is considered in this letter, where a novel network architecture is proposed, namely automatic modulation classification relation network (AMCRN), and verified with the baseline methods. Experimental results state that the accuracy of proposed AMCRN exceeds 90% and 10% to 50% improvements are obtained compared with classical schemes when the signal-to-noise ratio (SNR) is greater than −2 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3135688</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2560-4364</orcidid><orcidid>https://orcid.org/0000-0002-5352-8314</orcidid><orcidid>https://orcid.org/0000-0001-7838-0638</orcidid><orcidid>https://orcid.org/0000-0003-1547-3065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2022-03, Vol.26 (3), p.542-546 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2637441445 |
source | IEEE Electronic Library (IEL) Journals |
subjects | automatic modulation classification Classification Computer architecture Convolution Convolutional neural networks Deep learning Feature extraction Few shot learning Kernel Machine learning Modulation relation network Signal to noise ratio Training |
title | AMCRN: Few-Shot Learning for Automatic Modulation Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMCRN:%20Few-Shot%20Learning%20for%20Automatic%20Modulation%20Classification&rft.jtitle=IEEE%20communications%20letters&rft.au=Zhou,%20Quan&rft.date=2022-03-01&rft.volume=26&rft.issue=3&rft.spage=542&rft.epage=546&rft.pages=542-546&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3135688&rft_dat=%3Cproquest_ieee_%3E2637441445%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-fc666abad2a16079e33e9fec2929aa59fc32df4b034d0aa18579948e7fd0a90e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637441445&rft_id=info:pmid/&rft_ieee_id=9650842&rfr_iscdi=true |