Loading…

Optimal control of Aedes aegypti using rainfall and temperature data

The Aedes aegypti mosquito is a vector of several world’s leading infectious diseases. Monitoring and environmental management techniques have been developed and improved to control mosquito infestation. A mathematical model with a dependence of the parameters on temperature and rainfall is used to...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2022-04, Vol.41 (3), Article 91
Main Authors: Vasconcelos, Amália S. V., Lima, Josenildo S., Cardoso, Rodrigo T. N., Acebal, José L., Loaiza, Aníbal M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3
cites cdi_FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3
container_end_page
container_issue 3
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator Vasconcelos, Amália S. V.
Lima, Josenildo S.
Cardoso, Rodrigo T. N.
Acebal, José L.
Loaiza, Aníbal M.
description The Aedes aegypti mosquito is a vector of several world’s leading infectious diseases. Monitoring and environmental management techniques have been developed and improved to control mosquito infestation. A mathematical model with a dependence of the parameters on temperature and rainfall is used to represent the population of life-stages of the Aedes aegypti . The local and global stability of the model is analyzed. Field data from females mosquitoes captured by traps in the city of Lavras (Brazil) were considered to calibrate the model parameters for summer and spring data. Based on the Pontryagin Maximum Principle, an optimal control problem was formulated to evaluate costs in environmental management control actions using adulticides and larvicides. The model was solved numerically by the Runge–Kutta algorithm. The model parameters were estimated using a Real-Biased Genetic Algorithm, and the optimal control problem was obtained employing the Forward–Backward Sweep method. The findings indicate a reasonable adjustment of the field data and efficiency in reducing the Aedes aegypti population when using all the proposed control approaches. Furthermore, control in two seasons proved to be more effective in combating the vector than control in just one season.
doi_str_mv 10.1007/s40314-022-01804-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637579175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637579175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3</originalsourceid><addsrcrecordid>eNp9UEtPwzAMjhBIjMEf4BSJc8B5LF6P03hKk3aBcxQ1zrSpa0vSHvbvCRSJGyfb-h62P8ZuJdxLAHzIBrQ0ApQSIJdgBJ6xWWlQgAZ1zmZK6aXQFvQlu8r5AKBRGjNjj9t-2B99w-uuHVLX8C7yFQXK3NPuVDA-5n2748nv2-ibhvs28IGOPSU_jIl48IO_ZhcFy3TzW-fs4_npff0qNtuXt_VqI2otq0GEaBcBow2RpLXelDkgxhopygqtUQAkZbla1YRSSw9IxmodK2P80gQ9Z3eTb5-6z5Hy4A7dmNqy0imrcYGVxEVhqYlVpy7nRNH1qbyYTk6C-07LTWm5kpb7ScthEelJlAu53VH6s_5H9QWtNmwr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637579175</pqid></control><display><type>article</type><title>Optimal control of Aedes aegypti using rainfall and temperature data</title><source>Springer Nature</source><creator>Vasconcelos, Amália S. V. ; Lima, Josenildo S. ; Cardoso, Rodrigo T. N. ; Acebal, José L. ; Loaiza, Aníbal M.</creator><creatorcontrib>Vasconcelos, Amália S. V. ; Lima, Josenildo S. ; Cardoso, Rodrigo T. N. ; Acebal, José L. ; Loaiza, Aníbal M.</creatorcontrib><description>The Aedes aegypti mosquito is a vector of several world’s leading infectious diseases. Monitoring and environmental management techniques have been developed and improved to control mosquito infestation. A mathematical model with a dependence of the parameters on temperature and rainfall is used to represent the population of life-stages of the Aedes aegypti . The local and global stability of the model is analyzed. Field data from females mosquitoes captured by traps in the city of Lavras (Brazil) were considered to calibrate the model parameters for summer and spring data. Based on the Pontryagin Maximum Principle, an optimal control problem was formulated to evaluate costs in environmental management control actions using adulticides and larvicides. The model was solved numerically by the Runge–Kutta algorithm. The model parameters were estimated using a Real-Biased Genetic Algorithm, and the optimal control problem was obtained employing the Forward–Backward Sweep method. The findings indicate a reasonable adjustment of the field data and efficiency in reducing the Aedes aegypti population when using all the proposed control approaches. Furthermore, control in two seasons proved to be more effective in combating the vector than control in just one season.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-01804-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Environmental management ; Genetic algorithms ; Infectious diseases ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Mosquitoes ; Optimal control ; Parameter estimation ; Rainfall ; Runge-Kutta method ; Stability analysis</subject><ispartof>Computational &amp; applied mathematics, 2022-04, Vol.41 (3), Article 91</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3</citedby><cites>FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3</cites><orcidid>0000-0002-8789-614X ; 0000-0001-5149-1805 ; 0000-0002-6784-2929 ; 0000-0003-2229-0806 ; 0000-0002-9294-1363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vasconcelos, Amália S. V.</creatorcontrib><creatorcontrib>Lima, Josenildo S.</creatorcontrib><creatorcontrib>Cardoso, Rodrigo T. N.</creatorcontrib><creatorcontrib>Acebal, José L.</creatorcontrib><creatorcontrib>Loaiza, Aníbal M.</creatorcontrib><title>Optimal control of Aedes aegypti using rainfall and temperature data</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>The Aedes aegypti mosquito is a vector of several world’s leading infectious diseases. Monitoring and environmental management techniques have been developed and improved to control mosquito infestation. A mathematical model with a dependence of the parameters on temperature and rainfall is used to represent the population of life-stages of the Aedes aegypti . The local and global stability of the model is analyzed. Field data from females mosquitoes captured by traps in the city of Lavras (Brazil) were considered to calibrate the model parameters for summer and spring data. Based on the Pontryagin Maximum Principle, an optimal control problem was formulated to evaluate costs in environmental management control actions using adulticides and larvicides. The model was solved numerically by the Runge–Kutta algorithm. The model parameters were estimated using a Real-Biased Genetic Algorithm, and the optimal control problem was obtained employing the Forward–Backward Sweep method. The findings indicate a reasonable adjustment of the field data and efficiency in reducing the Aedes aegypti population when using all the proposed control approaches. Furthermore, control in two seasons proved to be more effective in combating the vector than control in just one season.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Environmental management</subject><subject>Genetic algorithms</subject><subject>Infectious diseases</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Mosquitoes</subject><subject>Optimal control</subject><subject>Parameter estimation</subject><subject>Rainfall</subject><subject>Runge-Kutta method</subject><subject>Stability analysis</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UEtPwzAMjhBIjMEf4BSJc8B5LF6P03hKk3aBcxQ1zrSpa0vSHvbvCRSJGyfb-h62P8ZuJdxLAHzIBrQ0ApQSIJdgBJ6xWWlQgAZ1zmZK6aXQFvQlu8r5AKBRGjNjj9t-2B99w-uuHVLX8C7yFQXK3NPuVDA-5n2748nv2-ibhvs28IGOPSU_jIl48IO_ZhcFy3TzW-fs4_npff0qNtuXt_VqI2otq0GEaBcBow2RpLXelDkgxhopygqtUQAkZbla1YRSSw9IxmodK2P80gQ9Z3eTb5-6z5Hy4A7dmNqy0imrcYGVxEVhqYlVpy7nRNH1qbyYTk6C-07LTWm5kpb7ScthEelJlAu53VH6s_5H9QWtNmwr</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Vasconcelos, Amália S. V.</creator><creator>Lima, Josenildo S.</creator><creator>Cardoso, Rodrigo T. N.</creator><creator>Acebal, José L.</creator><creator>Loaiza, Aníbal M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8789-614X</orcidid><orcidid>https://orcid.org/0000-0001-5149-1805</orcidid><orcidid>https://orcid.org/0000-0002-6784-2929</orcidid><orcidid>https://orcid.org/0000-0003-2229-0806</orcidid><orcidid>https://orcid.org/0000-0002-9294-1363</orcidid></search><sort><creationdate>20220401</creationdate><title>Optimal control of Aedes aegypti using rainfall and temperature data</title><author>Vasconcelos, Amália S. V. ; Lima, Josenildo S. ; Cardoso, Rodrigo T. N. ; Acebal, José L. ; Loaiza, Aníbal M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Environmental management</topic><topic>Genetic algorithms</topic><topic>Infectious diseases</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Mosquitoes</topic><topic>Optimal control</topic><topic>Parameter estimation</topic><topic>Rainfall</topic><topic>Runge-Kutta method</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasconcelos, Amália S. V.</creatorcontrib><creatorcontrib>Lima, Josenildo S.</creatorcontrib><creatorcontrib>Cardoso, Rodrigo T. N.</creatorcontrib><creatorcontrib>Acebal, José L.</creatorcontrib><creatorcontrib>Loaiza, Aníbal M.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasconcelos, Amália S. V.</au><au>Lima, Josenildo S.</au><au>Cardoso, Rodrigo T. N.</au><au>Acebal, José L.</au><au>Loaiza, Aníbal M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of Aedes aegypti using rainfall and temperature data</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><artnum>91</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>The Aedes aegypti mosquito is a vector of several world’s leading infectious diseases. Monitoring and environmental management techniques have been developed and improved to control mosquito infestation. A mathematical model with a dependence of the parameters on temperature and rainfall is used to represent the population of life-stages of the Aedes aegypti . The local and global stability of the model is analyzed. Field data from females mosquitoes captured by traps in the city of Lavras (Brazil) were considered to calibrate the model parameters for summer and spring data. Based on the Pontryagin Maximum Principle, an optimal control problem was formulated to evaluate costs in environmental management control actions using adulticides and larvicides. The model was solved numerically by the Runge–Kutta algorithm. The model parameters were estimated using a Real-Biased Genetic Algorithm, and the optimal control problem was obtained employing the Forward–Backward Sweep method. The findings indicate a reasonable adjustment of the field data and efficiency in reducing the Aedes aegypti population when using all the proposed control approaches. Furthermore, control in two seasons proved to be more effective in combating the vector than control in just one season.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-01804-7</doi><orcidid>https://orcid.org/0000-0002-8789-614X</orcidid><orcidid>https://orcid.org/0000-0001-5149-1805</orcidid><orcidid>https://orcid.org/0000-0002-6784-2929</orcidid><orcidid>https://orcid.org/0000-0003-2229-0806</orcidid><orcidid>https://orcid.org/0000-0002-9294-1363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-04, Vol.41 (3), Article 91
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2637579175
source Springer Nature
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Environmental management
Genetic algorithms
Infectious diseases
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mathematics
Mathematics and Statistics
Maximum principle
Mosquitoes
Optimal control
Parameter estimation
Rainfall
Runge-Kutta method
Stability analysis
title Optimal control of Aedes aegypti using rainfall and temperature data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20Aedes%20aegypti%20using%20rainfall%20and%20temperature%20data&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Vasconcelos,%20Am%C3%A1lia%20S.%20V.&rft.date=2022-04-01&rft.volume=41&rft.issue=3&rft.artnum=91&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-01804-7&rft_dat=%3Cproquest_cross%3E2637579175%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-df65d7f6dfe166a4df6d77fc7ef19764200e111802ce7131a07e4633f944a84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637579175&rft_id=info:pmid/&rfr_iscdi=true