Loading…

On neural network identification for low-speed ship maneuvering model

Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and technology 2022-03, Vol.27 (1), p.772-785
Main Authors: Wakita, Kouki, Maki, Atsuo, Umeda, Naoya, Miyauchi, Yoshiki, Shimoji, Tohga, Rachman, Dimas M., Akimoto, Youhei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3
cites cdi_FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3
container_end_page 785
container_issue 1
container_start_page 772
container_title Journal of marine science and technology
container_volume 27
creator Wakita, Kouki
Maki, Atsuo
Umeda, Naoya
Miyauchi, Yoshiki
Shimoji, Tohga
Rachman, Dimas M.
Akimoto, Youhei
description Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts—an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the “standard” RNN, and the manual random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.
doi_str_mv 10.1007/s00773-021-00867-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637579479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707079244</galeid><sourcerecordid>A707079244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKt_wNOC59S8dpMcS6kPKPSi55Bmk5q6TdZka_Hfm7qCNxmYgWG-meED4BajGUaI3-eSOIWIYIiQaDjEZ2CCGeVQEEzPwQRJJiAjAl2Cq5x3CGFeSzQBy3Wogj0k3ZUyHGN6r3xrw-CdN3rwMVQupqqLR5h7a9sqv_m-2uuCfNrkw7bax9Z21-DC6S7bm986Ba8Py5fFE1ytH58X8xU0jLABMqNlY1rNJXOOSW6swOUP16DNBjfccuNIu0HIYioN5TWmjSON1FTUNRaipVNwN-7tU_w42DyoXTykUE4q0hSgLOayTM3Gqa3urPLBxSFpU6K1e29isM6X_pyjEpIwVgAyAibFnJN1qk9-r9OXwkid_KrRryp-1Y9fhQtERyj3JxE2_f3yD_UNt258yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637579479</pqid></control><display><type>article</type><title>On neural network identification for low-speed ship maneuvering model</title><source>Springer Nature</source><creator>Wakita, Kouki ; Maki, Atsuo ; Umeda, Naoya ; Miyauchi, Yoshiki ; Shimoji, Tohga ; Rachman, Dimas M. ; Akimoto, Youhei</creator><creatorcontrib>Wakita, Kouki ; Maki, Atsuo ; Umeda, Naoya ; Miyauchi, Yoshiki ; Shimoji, Tohga ; Rachman, Dimas M. ; Akimoto, Youhei</creatorcontrib><description>Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts—an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the “standard” RNN, and the manual random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.</description><identifier>ISSN: 0948-4280</identifier><identifier>EISSN: 1437-8213</identifier><identifier>DOI: 10.1007/s00773-021-00867-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Automatic control ; Automotive Engineering ; Berthing ; Computational fluid dynamics ; Computer applications ; Control systems ; Dynamic models ; Engineering ; Engineering Design ; Engineering Fluid Dynamics ; Fluid dynamics ; Hydrodynamics ; Identification ; Identification methods ; Low speed ; Mechanical Engineering ; Model testing ; Modelling ; Neural networks ; Offshore Engineering ; Original Article ; Recurrent neural networks ; Scale models ; Ship handling ; System identification ; Tests</subject><ispartof>Journal of marine science and technology, 2022-03, Vol.27 (1), p.772-785</ispartof><rights>The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3</citedby><cites>FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wakita, Kouki</creatorcontrib><creatorcontrib>Maki, Atsuo</creatorcontrib><creatorcontrib>Umeda, Naoya</creatorcontrib><creatorcontrib>Miyauchi, Yoshiki</creatorcontrib><creatorcontrib>Shimoji, Tohga</creatorcontrib><creatorcontrib>Rachman, Dimas M.</creatorcontrib><creatorcontrib>Akimoto, Youhei</creatorcontrib><title>On neural network identification for low-speed ship maneuvering model</title><title>Journal of marine science and technology</title><addtitle>J Mar Sci Technol</addtitle><description>Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts—an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the “standard” RNN, and the manual random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.</description><subject>Automatic control</subject><subject>Automotive Engineering</subject><subject>Berthing</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Control systems</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Low speed</subject><subject>Mechanical Engineering</subject><subject>Model testing</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Offshore Engineering</subject><subject>Original Article</subject><subject>Recurrent neural networks</subject><subject>Scale models</subject><subject>Ship handling</subject><subject>System identification</subject><subject>Tests</subject><issn>0948-4280</issn><issn>1437-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKt_wNOC59S8dpMcS6kPKPSi55Bmk5q6TdZka_Hfm7qCNxmYgWG-meED4BajGUaI3-eSOIWIYIiQaDjEZ2CCGeVQEEzPwQRJJiAjAl2Cq5x3CGFeSzQBy3Wogj0k3ZUyHGN6r3xrw-CdN3rwMVQupqqLR5h7a9sqv_m-2uuCfNrkw7bax9Z21-DC6S7bm986Ba8Py5fFE1ytH58X8xU0jLABMqNlY1rNJXOOSW6swOUP16DNBjfccuNIu0HIYioN5TWmjSON1FTUNRaipVNwN-7tU_w42DyoXTykUE4q0hSgLOayTM3Gqa3urPLBxSFpU6K1e29isM6X_pyjEpIwVgAyAibFnJN1qk9-r9OXwkid_KrRryp-1Y9fhQtERyj3JxE2_f3yD_UNt258yw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wakita, Kouki</creator><creator>Maki, Atsuo</creator><creator>Umeda, Naoya</creator><creator>Miyauchi, Yoshiki</creator><creator>Shimoji, Tohga</creator><creator>Rachman, Dimas M.</creator><creator>Akimoto, Youhei</creator><general>Springer Japan</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20220301</creationdate><title>On neural network identification for low-speed ship maneuvering model</title><author>Wakita, Kouki ; Maki, Atsuo ; Umeda, Naoya ; Miyauchi, Yoshiki ; Shimoji, Tohga ; Rachman, Dimas M. ; Akimoto, Youhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automatic control</topic><topic>Automotive Engineering</topic><topic>Berthing</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Control systems</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Low speed</topic><topic>Mechanical Engineering</topic><topic>Model testing</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Offshore Engineering</topic><topic>Original Article</topic><topic>Recurrent neural networks</topic><topic>Scale models</topic><topic>Ship handling</topic><topic>System identification</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakita, Kouki</creatorcontrib><creatorcontrib>Maki, Atsuo</creatorcontrib><creatorcontrib>Umeda, Naoya</creatorcontrib><creatorcontrib>Miyauchi, Yoshiki</creatorcontrib><creatorcontrib>Shimoji, Tohga</creatorcontrib><creatorcontrib>Rachman, Dimas M.</creatorcontrib><creatorcontrib>Akimoto, Youhei</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of marine science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakita, Kouki</au><au>Maki, Atsuo</au><au>Umeda, Naoya</au><au>Miyauchi, Yoshiki</au><au>Shimoji, Tohga</au><au>Rachman, Dimas M.</au><au>Akimoto, Youhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On neural network identification for low-speed ship maneuvering model</atitle><jtitle>Journal of marine science and technology</jtitle><stitle>J Mar Sci Technol</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>772</spage><epage>785</epage><pages>772-785</pages><issn>0948-4280</issn><eissn>1437-8213</eissn><abstract>Several studies on ship maneuvering models have been conducted using captive model tests or computational fluid dynamics (CFD) and physical models, such as the maneuvering modeling group (MMG) model. A new system identification method for generating a low-speed maneuvering model using recurrent neural networks (RNNs) and free running model tests is proposed in this study. We especially focus on a low-speed maneuver such as the final phase in berthing to achieve automatic berthing control. Accurate dynamic modeling with minimum modeling error is highly desired to establish a model-based control system. We propose a new loss function that reduces the effect of the noise included in the training data. Besides, we revealed the following facts—an RNN that ignores the memory before a certain time improved the prediction accuracy compared with the “standard” RNN, and the manual random maneuver test was effective in obtaining an accurate berthing maneuver model. In addition, several low-speed free running model tests were performed for the scale model of the M.V. Esso Osaka. As a result, this paper showed that the proposed method using a neural network model could accurately represent low-speed maneuvering motions.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00773-021-00867-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0948-4280
ispartof Journal of marine science and technology, 2022-03, Vol.27 (1), p.772-785
issn 0948-4280
1437-8213
language eng
recordid cdi_proquest_journals_2637579479
source Springer Nature
subjects Automatic control
Automotive Engineering
Berthing
Computational fluid dynamics
Computer applications
Control systems
Dynamic models
Engineering
Engineering Design
Engineering Fluid Dynamics
Fluid dynamics
Hydrodynamics
Identification
Identification methods
Low speed
Mechanical Engineering
Model testing
Modelling
Neural networks
Offshore Engineering
Original Article
Recurrent neural networks
Scale models
Ship handling
System identification
Tests
title On neural network identification for low-speed ship maneuvering model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20neural%20network%20identification%20for%20low-speed%20ship%20maneuvering%20model&rft.jtitle=Journal%20of%20marine%20science%20and%20technology&rft.au=Wakita,%20Kouki&rft.date=2022-03-01&rft.volume=27&rft.issue=1&rft.spage=772&rft.epage=785&rft.pages=772-785&rft.issn=0948-4280&rft.eissn=1437-8213&rft_id=info:doi/10.1007/s00773-021-00867-1&rft_dat=%3Cgale_proqu%3EA707079244%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-4ca96cda794ff497ce81175f60bb167e7cf2db00e139c375136f269a3855188d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637579479&rft_id=info:pmid/&rft_galeid=A707079244&rfr_iscdi=true