Loading…

Stochastic makespan minimization in structured set systems

We study stochastic combinatorial optimization problems where the objective is to minimize the expected maximum load (a.k.a. the makespan). In this framework, we have a set of n tasks and m resources, where each task j uses some subset of the resources. Tasks have random sizes X j , and our goal is...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 2022-03, Vol.192 (1-2), p.597-630
Main Authors: Gupta, Anupam, Kumar, Amit, Nagarajan, Viswanath, Shen, Xiangkun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-69626d35b1beed87735ca3547b28ac1d9f4d05413b7691ee8a8d7f033537ff323
container_end_page 630
container_issue 1-2
container_start_page 597
container_title Mathematical programming
container_volume 192
creator Gupta, Anupam
Kumar, Amit
Nagarajan, Viswanath
Shen, Xiangkun
description We study stochastic combinatorial optimization problems where the objective is to minimize the expected maximum load (a.k.a. the makespan). In this framework, we have a set of n tasks and m resources, where each task j uses some subset of the resources. Tasks have random sizes X j , and our goal is to non-adaptively select t tasks to minimize the expected maximum load over all resources, where the load on any resource i is the total size of all selected tasks that use i . For example, when resources are points and tasks are intervals in a line, we obtain an O ( log log m ) -approximation algorithm. Our technique is also applicable to other problems with some geometric structure in the relation between tasks and resources; e.g., packing paths, rectangles, and “fat” objects. Our approach uses a strong LP relaxation using the cumulant generating functions of the random variables. We also show that this LP has an Ω ( log ∗ m ) integrality gap, even for the problem of selecting intervals on a line; here log ∗ m is the iterated logarithm function.
doi_str_mv 10.1007/s10107-021-01741-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2637650309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703948658</galeid><sourcerecordid>A703948658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-69626d35b1beed87735ca3547b28ac1d9f4d05413b7691ee8a8d7f033537ff323</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz1knTZO03pbFLxA8qOeQpsmadZuuSXrY_fVGK3iTOQwM7zMzPAhdElgQAHEdCRAQGEqCgYiK4MMRmpGKclzxih-jGUDJMOMETtFZjBsAILSuZ-jmJQ36XcXkdNGrDxN3yhe98653B5Xc4Avni5jCqNMYTFdEk4q4j8n08RydWLWN5uK3z9Hb3e3r6gE_Pd8_rpZPWFNoEuYNL3lHWUtaY7paCMq0oqwSbVkrTbrGVh2witBW8IYYU6u6ExYoZVRYS0s6R1fT3l0YPkcTk9wMY_D5pCw5FZxBvpNTiym1VlsjnbdDCkrn6kzv9OCNdXm-FECbquaszkA5AToMMQZj5S64XoW9JCC_pcpJqsxS5Y9UecgQnaCYw35twt8v_1BfPz15yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637650309</pqid></control><display><type>article</type><title>Stochastic makespan minimization in structured set systems</title><source>Business Source Ultimate</source><source>Springer Nature</source><creator>Gupta, Anupam ; Kumar, Amit ; Nagarajan, Viswanath ; Shen, Xiangkun</creator><creatorcontrib>Gupta, Anupam ; Kumar, Amit ; Nagarajan, Viswanath ; Shen, Xiangkun</creatorcontrib><description>We study stochastic combinatorial optimization problems where the objective is to minimize the expected maximum load (a.k.a. the makespan). In this framework, we have a set of n tasks and m resources, where each task j uses some subset of the resources. Tasks have random sizes X j , and our goal is to non-adaptively select t tasks to minimize the expected maximum load over all resources, where the load on any resource i is the total size of all selected tasks that use i . For example, when resources are points and tasks are intervals in a line, we obtain an O ( log log m ) -approximation algorithm. Our technique is also applicable to other problems with some geometric structure in the relation between tasks and resources; e.g., packing paths, rectangles, and “fat” objects. Our approach uses a strong LP relaxation using the cumulant generating functions of the random variables. We also show that this LP has an Ω ( log ∗ m ) integrality gap, even for the problem of selecting intervals on a line; here log ∗ m is the iterated logarithm function.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-021-01741-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorial analysis ; Combinatorics ; Full Length Paper ; Intervals ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Random variables ; Rectangles ; Theoretical</subject><ispartof>Mathematical programming, 2022-03, Vol.192 (1-2), p.597-630</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-69626d35b1beed87735ca3547b28ac1d9f4d05413b7691ee8a8d7f033537ff323</cites><orcidid>0000-0002-9514-5581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Gupta, Anupam</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Nagarajan, Viswanath</creatorcontrib><creatorcontrib>Shen, Xiangkun</creatorcontrib><title>Stochastic makespan minimization in structured set systems</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We study stochastic combinatorial optimization problems where the objective is to minimize the expected maximum load (a.k.a. the makespan). In this framework, we have a set of n tasks and m resources, where each task j uses some subset of the resources. Tasks have random sizes X j , and our goal is to non-adaptively select t tasks to minimize the expected maximum load over all resources, where the load on any resource i is the total size of all selected tasks that use i . For example, when resources are points and tasks are intervals in a line, we obtain an O ( log log m ) -approximation algorithm. Our technique is also applicable to other problems with some geometric structure in the relation between tasks and resources; e.g., packing paths, rectangles, and “fat” objects. Our approach uses a strong LP relaxation using the cumulant generating functions of the random variables. We also show that this LP has an Ω ( log ∗ m ) integrality gap, even for the problem of selecting intervals on a line; here log ∗ m is the iterated logarithm function.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Rectangles</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz1knTZO03pbFLxA8qOeQpsmadZuuSXrY_fVGK3iTOQwM7zMzPAhdElgQAHEdCRAQGEqCgYiK4MMRmpGKclzxih-jGUDJMOMETtFZjBsAILSuZ-jmJQ36XcXkdNGrDxN3yhe98653B5Xc4Avni5jCqNMYTFdEk4q4j8n08RydWLWN5uK3z9Hb3e3r6gE_Pd8_rpZPWFNoEuYNL3lHWUtaY7paCMq0oqwSbVkrTbrGVh2witBW8IYYU6u6ExYoZVRYS0s6R1fT3l0YPkcTk9wMY_D5pCw5FZxBvpNTiym1VlsjnbdDCkrn6kzv9OCNdXm-FECbquaszkA5AToMMQZj5S64XoW9JCC_pcpJqsxS5Y9UecgQnaCYw35twt8v_1BfPz15yQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gupta, Anupam</creator><creator>Kumar, Amit</creator><creator>Nagarajan, Viswanath</creator><creator>Shen, Xiangkun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9514-5581</orcidid></search><sort><creationdate>20220301</creationdate><title>Stochastic makespan minimization in structured set systems</title><author>Gupta, Anupam ; Kumar, Amit ; Nagarajan, Viswanath ; Shen, Xiangkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-69626d35b1beed87735ca3547b28ac1d9f4d05413b7691ee8a8d7f033537ff323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Rectangles</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Anupam</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Nagarajan, Viswanath</creatorcontrib><creatorcontrib>Shen, Xiangkun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Anupam</au><au>Kumar, Amit</au><au>Nagarajan, Viswanath</au><au>Shen, Xiangkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic makespan minimization in structured set systems</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>192</volume><issue>1-2</issue><spage>597</spage><epage>630</epage><pages>597-630</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>We study stochastic combinatorial optimization problems where the objective is to minimize the expected maximum load (a.k.a. the makespan). In this framework, we have a set of n tasks and m resources, where each task j uses some subset of the resources. Tasks have random sizes X j , and our goal is to non-adaptively select t tasks to minimize the expected maximum load over all resources, where the load on any resource i is the total size of all selected tasks that use i . For example, when resources are points and tasks are intervals in a line, we obtain an O ( log log m ) -approximation algorithm. Our technique is also applicable to other problems with some geometric structure in the relation between tasks and resources; e.g., packing paths, rectangles, and “fat” objects. Our approach uses a strong LP relaxation using the cumulant generating functions of the random variables. We also show that this LP has an Ω ( log ∗ m ) integrality gap, even for the problem of selecting intervals on a line; here log ∗ m is the iterated logarithm function.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-021-01741-z</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-9514-5581</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2022-03, Vol.192 (1-2), p.597-630
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2637650309
source Business Source Ultimate; Springer Nature
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorial analysis
Combinatorics
Full Length Paper
Intervals
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Random variables
Rectangles
Theoretical
title Stochastic makespan minimization in structured set systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20makespan%20minimization%20in%20structured%20set%20systems&rft.jtitle=Mathematical%20programming&rft.au=Gupta,%20Anupam&rft.date=2022-03-01&rft.volume=192&rft.issue=1-2&rft.spage=597&rft.epage=630&rft.pages=597-630&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-021-01741-z&rft_dat=%3Cgale_proqu%3EA703948658%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-69626d35b1beed87735ca3547b28ac1d9f4d05413b7691ee8a8d7f033537ff323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637650309&rft_id=info:pmid/&rft_galeid=A703948658&rfr_iscdi=true